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Initial Motions of a Jacobi ellipsoid at the
point of bifurcation

Shin Yabushita

1. Introduction

In discussing the figure of the Earth, I. Newton assumed that it is a spheroid with the axis of
symmetry coinciding with the axis of rotation. Since then. it was shown rigorously by Maclaurin
that a spheroid is a possible form of equilibrium of incompressible rotation fluid for a give value of
angular velocity. Later, Jacobi showed that an ellipsoid of three different axes is also a possible
form of equilibrium, provided that the angular velocity exceeds a certain value. In all of these
investigations, the fluid mass is assumed having uniform rotation. In all of these studies, the
angular velocity enters into the equations governing the forms through the factor w 2/27 G p , where
w, pand G denote the angular velocity, density (assumed constant) and the constant of gravity,
respectively. It follows that when one follows the evolution of a fluid mass with increasing density,
it would be equivalent to assuming increasing angular momentum, and we will assume so
throughout the present investigation, as in previous work.

As mentioned, Jacobi ellipsoids are possible forms of equilibrium provided that the angular
momentum exceeds a certain value. Later, H. Poincare (1885) and G. Darwin (1886) showed that
the so called pear shaped figure bifurcates when the angular velocity of the Jacobi ellipsoid exceeds
a certain value. By an extensive investigation, it was shown by Jeans (1929) that the pear-shaped
figure are secularly unstable. Since then, Cartan (1926) showed that the Jacobi ellipsoid becomes
ordinarily unstable when the pear-shaped figure bifurcates. Chandrasekhar & Lebovitz (1963) used
the tensor virial method and Yabushita (1965) used the method suggested by Cartan (1926) to
calculate the time constants of the unstable motion away from the ellipsoids.

The object of the present paper is to investigate the initial value problem associated with the
bifurcating mode, in general, and to show that there is no ambiguity in specifying the initial
motions of the fluid mass. It will further be shown that the departure of the pear shaped figure
from the critical Jacobi ellipsoid proceeds as At+ B, where t is the time and A and B are constants

specified by the initial conditions.

2. Equations of motion and the surface condition
In the Lagrangian method of fluid dynamics we are interested in the motion of a fluid element

0x 0y 0z, which at time #= 0 occupies a point (x, y, z ). Let the coordinates of the element dx dy
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0z at time, ¢ be X, Y, Z. Apparently the position of a fluid element is a function of x, y, z and ¢:
X=X (x,9,2,t),
Y=Y (x,392,¢),
Z=27Z (x,y,2,t).

The equations of motion for the fluid referred to the coordinate system which is rotating around

the axis with angular velocity w are:

o:X _ oY ,_09¢ _ 1 op
ar2 Wy T WX = 5% T ox
o’y oY ,,_292¢ _ 1 op
a¢ TEW Gy T WY =5y T 5y
927 _9¢ _ 1 op
EYE 22 5 97

where ¢ is the gravitational potential, p is the density of the fluid, and p is the pressure.

To deduce the equations containing only derivatives with respect to the independent variables x,

¥, 2, t, we multiply the above equations by

20X 020Y oZ
ox ’° Oy’ 09z

and add, obtaining

82X8X+82Y8Y+8228Z+2 (aan_aYaX)
ot ox ot 9x ot ox ot Ox ot 9x

+Y

ox aY) 24 1 9p
—_ 2 = —_
w (X ox Bx

and similar equations containing derivatives with respect to y and z. The equation of continuity for

uniform density is

°2(X.v.2) _ |,
o (x,9.2)

The displacement of a fluid element from its original position is given by:

E(xyzt)=X(xyzt)—x,
n(xyzt)=Y(xyz2t)-y,
(e, y,2,t)=Z(x,y2t) z.

In the following we shall be concerned with small motions of a fluid around an equilibrium form

and therefore &, n, { and their time derivatives will be regarded as small quantities of the first

order. The equations of motion then take the following form;
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8% _, @1 _ 8y

ot  ““ ot  ox

on o¢ _ ox

3 T2 5] oy (2.1)

o%¢ _ ox

ot? oy
where

=P _ _ w? 2 2

=7, ¢ 5 (a2t y?). (2.2)
The equation of continuity takes the form

9L ,2nm 96 _ (2.3)

ox oy oz

In any configuration of relative equilibrium, relative to the rotating frame, %, ;'}, C , E, )}, C
must vanish and so we get
oy _ Ox _ 9x

ax=ay=az=0’

or
2
X=_§__¢____(x2+y2)= X0, (24)

where x, is not only independent of x, y, z, but also independent of ¢. Now we investigate the
properties of the solution of the equations of motion (2.1) supplemented by the equation of
continuity (2.3). Eqns. (2.1) may be regarded as a set of partial differential equations for y, and in
order to solve them we have to specify boundary conditions to be satisfied by y. We shall not derive
the well-established results for the surface condition for y, but will present them without detailed
proof. The readers interested in this are referred to Lyttleton (1953).

It is convenient to express y as

x(xy,2,t)= w(xyz2t)+ 10, (2.5)
where y, is the value of x for the equilibrium configuration, and is, by (2.4), constant. It can be
shown that if ¢, defined by

x_

= 4 —
T T I A (2.6)

is expanded on the ellipsoid

~o

2 2
RSN AN S|

aZ bZ CZ
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in terms of Lame surface harmonic functions

0==% A, M, N, 2.7)
then, on the ellipsoid, ¥ must take the form
w=2n Gp % (Ho,—Hi) Ar Mi* N, (2.8)

where M} - Ni are Lame functions evaluated at the surface of the ellipsoid, and H, — H; are the so-

called coefficients of stability defined by

H, =‘§—abc{L1(l) Sl(l)}1=o,
2ab
H, =‘§7§;%*{l&<l) Sk(l)}1=0,

L: (L), Sk (1) being Lamé function of the first and second kind, respectively. L1 (1) and S1 (1)
are particularly defined by

Li(1) = (A +ch)%,

w [ 3dA
0 [ e D (e

S1(4)

and S (4) is derived from L: ( 1) by

_ * (2n+1) dA
§1(1) = L (1) f SLE () [(at+ A) (b2 + ) (c?+ )"

where n is the order of Lx ( A1). It should be noted that a constant multiple of a Lame function is
also a Lameé function, and a multiplicative factor can always be chosen arbitrarily. H, and H; are,
however, unaltered by these multiplicative factors, as can be see from the above definitions.

The (H,— Hr) are usually called the 'coefficients of stability, for when the difference of the total
energy (gravitational and centrifugal) of a distorted ellipsoid and that of the original ellipsoid is
expressed as a homogeneous quadratic form in Ax's, the coefficients of Ax* are constant multiples of
H, — H:. Therefore if all the coefficients H, — H; are positive the total potential energy is minimum
when the ellipsoid is undistorted, and therefore the ellipsoid is a secularly stable configuration. On
the other hand, if some of H, — H: were negative the ellipsoid would no longer be a configuration of
minimum potential energy and would no longer bé a secularly stable configuration. If a liquid mass
is regarded as evolving along the series of the Jacobi ellipsoids with gradually increasing angular
momentum the ratio of the axes a : b : ¢ slowly changes and so do H,— H:. Since there are 2n+ 1
Lame functions of order n, there are 2n+ 1 coefficients of stability. It has been proved by Poincaré
that as the ratio a:b:c gradually changes in the direction of increasing angular momentum, one of
the coefficients of stability of order 3 first changes sign, and then one of the coefficients of stability
of order 4 changes sign and so on. For any order n, only one of 2n+ 1 coefficients of stability

changes sign and, in particular, the Lame functions of order 3 through which the secular stability
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sets in is
L (A)=(A+a®)%(1+h),

which corresponds to

xZ y2 zZ B ]
LMN < « [ ai-h T oron T eop 1

where

h = % (a?+2b%+ 2¢2) + % (a*+ 4b*+ 4c*—7b%2~c?a’—a?b?)",

The ratio of the axes of the critical Jacobi ellipsoid has been calculated by Darwin (1886) who
givesa:b:c:(abc)” = 1.88583:0.81498 : 0.65066 : 1,

CUZ

m = 0.14200 .

All the ellipsoids beyond this point are secularly unstable.

3. The free oscillations of order n.
In the present section we investigate how the fluid motion is determined in terms of initial

conditions. We have first the equations of motion

9°8 _,,,0n _ 2y
ot? ot ox ’
o%n 9¢ _ 2w
ot ¢ —cl’
ot? 2z’
and the equation of continuity
06 , on , 8L _ (3.2)

ox oy oz

In order to express the surface condition for ¥ in aconvenient form we first notice that Lame

functions are, on the ellipsoid, orthogonal to each other;

[[ MiN\M:N.pdS=0, if k+¢
where

2 2 2
L=x_+y74+zi

p:  at b ct
and dS is a surface element of the ellipsoid. Eliminating A from (2.7) and (2.8) using the above

orthogonality relation we get;
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JI MNowpds=2nGp H~H) [[ MiNi (Z5&+ 50+ 250) pdS.  (33)

It should now be noticed that if we put

w(x,y,2,t) =wala,y2,t) tyar (x,9,2,¢) + ..
E(x,3,2,8) =&n1(myz,t) + Ene (x,9,2,8) +
n(x,y2,t)=nn1(x,32t) + .

C(x,y,2,t) =Ll (x,9,2,8) +Ln2 (x,9,2,8) + ...

where . is a homogeneous polynomial of degree n in x, y, z, and so on, the equations for the
homogeneous parts w. (x,y, 2, ¢t)and &1 (x,9,2,£),0n-1 (x,%,2,t), (a1 (x,9 2,t) donot
contain any of the lower polynomials. Therefore as long as the motions of order n are concerned,
w (x,y,2,t)and & (x,y,z, t), etc. may be regarded as consisting of homogeneous polynomials of

order n and n— 1 respectively. We put:

E=Y apr®aPyizr, ptq+tr=n—1,
n=2Brrt)xPy?z’, ptqtr=n-—-1,
(=2 yperWaPyizr, ptq+tr=n—1,
w=3 Qpr(t)aPy?z’, ptgtr =n.

&, n, { and y will uniquely be determined if @, f, y and ® are determined. The number of the
D'sin v is%(n +1)(n + 2), the number of a's being%n(n + 1), etc., in total we have 2 n?
+3n +1 (=% n(ntl)+ % ( n+ 1)) coefficients to be determined. On the other hand each

equation of motion gives o n ( n+ 1) relations, the equation of continuity provides ‘% n(ntl)
relations, and the surface condition (3.3) provides 2n+ 1 relations available to determine a, £, »
and ®. Therefore the number of the unknowns is equal to the number of equations, there being no
ambiguity at all.
In order to obtain the frequencies of the free oscillations of the liquid mass, we further put

Apar () = apgre?, Bpor(t) = Boare’?, Vpar(t) = ypgre’*

D por (t) = D pgrei’t
where a, f, y and @ are constants. By comparing the coefﬁcieﬁts of e’** we get first from the

equations of motion

_llzapqr_Ziwlﬂpqr=(p +].) q)p+l,q,r
- Azﬂpqr-’_ 2lwl apqrz(q + 1) @p,q-fl)r (34)
_A.Zypqr =(I"+ 1) (Dp,q,r+1

and from the equation of continuity,

papqr+ (q + 1) ﬁp—l,q+1,r +<r + 1) yp'l,q,r+l: O » (35)
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and from the surface condition (3.3),

21 Gp (H,— H:) X (linear combination of a's, f's, 7's) = linear combination of ®'s (3.6)

The above is a set of linear homogeneous equations. In order to put these into a matrix form it is

convenient to arrange a, f, y and @ in the following way:

apqrzwm 1§m§%n <n+1)
B o= Wn %n(n+1)+1§m§n(n+1)
qur=(Um n(n+l)+1§m§%n(n+l)
Dpyr=Wn : %n(n+1)+ 1€=m=2n?+3n+1.
Then (3.4), (3.5) and (3.6) can be put into the form
M-w=0 (3.7
where w is the vector (w1, w2, ......... , W2n2+3n+1) and M is a matrix;
A2 A 00 0,0,
n
5 (n+1)
E "1100 0,0,
A AZ , 0,
n
5 (n+1)
0, A0, A0 0, 0
)15 _____
M= S (n+1) (38
0, 010,. 0 Azio,. 0
0, . i
.. 0
NON ZERO NON ZERO S (n=1)
0y e e
1 ] 0
(HO_HI)
(HO_HZ)
NON-ZERO 2n+1
(HO—HZIL“‘l) !
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In the above expression for the matrix M, factors independent of 1 are not explicitly written

down. The first -;— n{(n+ 1) rows come from eq. (3.4) and the next % n (n- 1) rows from eq. (3.5).

The last 2n+ 1 rows come from eq. (3.6) and, each of the first —g— n (n+ 1) elements of the first
row in this group contains (H,—H1) as a multiplicative factor, each of the second 3 n(n+1)

2
elements contains (H,—H1), and so on. In order that non-zero solutions of (3.7) may exist, the

determinant of the matrix M must vanish;
D()) = determinant of M = 0. (3.9

This is the equation which determines permissible values of 1.

4. The number of free oscillations of order n.
We start this section by discussing some properties of determinants which are relevant when we
consider the number of free oscillations of order n. First we consider an N x N determinant of the

form

Each element in this block
contains at least one A as a

multiplicative factor,

d(1)=

L

where (i) L > M, (ii) each element in the first Lx (N —M) block contains at least one A as a
multiplicative factor, and (iii) none of the elements in the other block contains 1. First of all we
notice that when d ( 1) is regarded as a polynomial in A, the lowest power of d ( A )is at least L — M.
Again, if A is put equal to zero in d (A1) we can easily see that all the first, second minor
determinants up tp (L —M — 1) th minor determinants of d (O) are zero and there is only one (L —
M) th minor determinant of d (O) which is different from zero. This non zero (L —M) th minor
determinant is the coefficient of A1Z* when d ( 1) is expressed as a polynomial in 4.

We now apply the results obtained above to the M defined by (3.8).

We see that the determinant D (1) of M is a polynomial in A of degree

2 [2% (n+1) +n} =92n2+ 4n.

The lowest power of D (4 ) is at least A"~ ! and D (1) must have the form

D (1) = constant (which contains none of (H,—Hy)) 1 27"+ 4» +

2n+1

+ ... constant X kI:[] (H,—Hp) A"~ 1=0. (4.1)
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Therefore A = 0 is an (n2— 1) ple root of D (1) = 0, and the number of other roots

Z2nt1

const. X Arft4ntl oy const. X lil (H,—Hp)= 0, (4.2)

isn®+ 4n+ 1. Since each root A is paired with— A, 1 = 0 must be another root of (3.9) when n
is even. In order that A = 0 may be a root of (3.9) the constant term of (3.9) must be zero. Thus we
come to the conclusion that

(a) WhennisoddD(A) =0 hasan(n®— 1) pleroot A =0 and the other roots are given by
(3.10). The constant term in (3.10) is the only non-zero n? th minor determinant of D (0), when D (0)
is regarded as a determinant.

(b) WhennisevenD (A) = 0 hasann? pleroot A = 0 and D (0) has the property that when
it is regarded as a determinant, all of the first, second minor determinants up to ( n%2— 1) th

minors are all zero.

5. Ordinary stability.
It is well known in the theory of differential equations that the general solution of a set of

differential equations

dA;
dt

[ d?A;

2| i~ g

J

+ by +cijAj]=0

where a;;, bij, cij are constant, has the form
Ai(t) = e’ (grte  + gote™ 2+, .. )

where g1, 82, . . . . . are constant, if the determinantal equation
Det. |ay A2+ by A+ cy| =0,

has a multiple root A with multiplicity @, and in general a multiple root A indicates an unstable
motion. With regard to this we have a theorem due to Routh (1884).

'When a equal roots occur in the determinant, and the terms in the solution with t as a factor are
to be absent, it is necessary as well as sufficient that all the first, second minors up to the (a — 1)
th should be zero.'

As we have seen in the previous section A = 0 is an n? ple root when nis even and an (n2—1)
. ple root when n is odd. However, the D (0 ) regarded as a determinant has the property that all the
minors of D (0 ) up to the (n? — 2) th minors when n is odd, and up to the (2 — 1) th minors when
n is even, are zero. Thus by the Routh's theorem the multiple root does not cause any instability of
motion.

As far as the ordinary instability is concerned, the case n= 3 is of great interest, for the secular

instability of the Jacobi series first enters through a surface deformation of order 3. From (3.8) we
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have forn= 3
7
A2 A2 ... An? = const. X kljl (H,— Hp)

where A1... Anarearrangedsothat A1 = A1: = ... Au.

When a liquid mass is in a configuration of a secularly stable ellipsoid it must necessarily be
ordinarily stable and the right hand side of the above equation must be positive. As the liquid mass
evolves along the Jacobi series only one of (Hy — H:) changes sign and consequently A% or 4.,
when 11= 132, must change sign at the point where the secular stability is lost. This means that A1
must be purely imaginary or complex where the secular instability ceases and thus the ordinary
instability of the Jacobi series sets in at the point where the secular stability is lost, a result due to
Cartan. Mathematical discussion does not, however, allow us to decide whether A is imaginary or
complex and the decision has to wait until the actual numerical calculations are carried out. This
has been done by Chandrasekhar & Lebovitz (1963) and by Yabushita (1965). The A has been
found to be purely imaginary.

6. Consideration concerning initial conditions.
From physical consideration, the initial condition of the motion of a liquid mass can be specified
by the values of &(x,y,2,¢), n(x,y,2,t), {(x,y,2,t)and their first time derivatives at t= 0. £,

n, ¢ att = 0 are not entirely independent, for they must satisfy the equation of continuity

o¢ , an , 2¢ _,

ox o9y « oz ’ t=0. (6.1)

A further restriction comes from the equation of continuity differentiated with respect to ¢.

d ,9¢ on o¢
it ( + +

22 " oy 5.) =0 or -—g-fc—+9—§-+-g€7=o, at =0 . (6.2)
The condition (6.1) will not need further explanation. To show that (6.2) does restrict the initial
velocity é , }1 , C , we consider the following example.
A particle is restricted to move along a plane curve,

flxy) =0
in a given field of force. The equations of motion,

x=F (x,y)

y=G (x,y)
allow four arbitrary constants. Two of these, x¢ and yo, the coordinates at ¢t = 0 are not independent
for they must satisfy the condition f (xs, ¥0) = 0. The initial velocities xo yo are again not

independent for they must satisfy the condition

iy = Lir Shi=0, a e=0.
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Now, & (x,v,2,t), n (x,3,2,t), { (x,9,2,¢) at t=0

are uniquely specified by % n(n+ 1) coefficients ( % (n+1) for a'sin & = X @ per x’y72") and the
same is true for (x,y,2,t), n(x,y,2,t), {(x,5 2,t)for t= 0. Thus the initial conditions are
specified by 3n (n+ 1) coefficients. These are, however, not entirely independent, for they must be
determined so that (6.1) and (6.2) may be satisfied. Each of (6.1) and (6.2) gives % n(n—1)
relations between the coefficients in &, n, { andin &, n, { at t=0, and we have 2n?+ 4n
independent coefficients. On the other hand we have shown in section 3 that there are 2n?2+ 4n
free oseillations of order n where A = 0 is a multiple root. This does not however mean that the
motions corresponding to the same A are not independent but the multiple root simply introduces
the same number of arbitrary constants as the multiplicity of the root. Thus the general solution of
the equations of motion supplemented by the equation of continuity and the surface condition allow
2n%+ 4 n arbitrary constants while the initial condition is specified by 27%+ 4 n independent
coefficients.

Thus we have proved that is no ambiguity at all in expressing the motions of a liquid mass in

terms of initial conditions.

7. The limiting form of the characteristic surface deformation.

The time constants of the surfacé oscillations are given as the roots of the equation (3.9). The
pear-shaped deformation of a Jacobi ellipsoid enters through a surface deformationn which is
represented by a Lameé function of order n=3, and a method for calculating the characteristic
frequencies for n=3 has been given in Yabushita (1965). Specifically, the pear-shaped figure
corresponds to the surface deformation represented the Poincaré polynomial denoted by Q.. For
explicit expressions for Poincaré polynomials in terms of ( x, ¥, z ) and ( a, b, ¢ ), see Yabushita

(1965). In terms of the Poincare polynomials, the surface deformation, o of order n is expressed as
o =2Ar Q (7.1)

where summation is over k from 1 to 2n+ 1 in general, and 7 in case of n= 3. The characteristic

frequencies, A's are then given as solutions of the equation
(A2-4w?) Av=2nGpThs H,—H)A, k=1,2,.. (2n+1) . (7.2)

where summation is over i from 1 to 2n+1, in general, and to 7 for n= 3 (Yabushita 1965).
Explicit expressions for the coefficients A have been derived in Yabushita (1965).

Since some of the coefficients, A vanish, the equation (7.2) splits into two parts, namely,

z GaAi=0,

(=167

(7.3)
5
‘:Zz GirAi= 0,
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where
Gi=2nGphaH,—H)—(A2— 4 w?) da (7.4)

and where ¢ i is Kronecker's delta.

Now, as the point of bifurcation is approached, the frequency A which changes sign at the point
of bifurcation becomes small. It may be noted that the h's are of orders O (1), O (1/1),and O (1/ 1 %).
It will be seen later that the h's of the order O (1/ 1) determines the A's. Hence the term (1% —w ?)

will be neglected in the calculation to follow. The equations (7.3) may be written in the form

has (Ho—H2) As+hs (Ho—H3z) As+he (Ho—H4) As+hse (Ho—Hs) As=0,
hes (Ho—H:) Az +hs (Ho—Hs) As+hs (Ho—H4) As+hss (Ho—Hs) As=0,
hu (Ho—H:) Az +hu (Ho—Hs) As+hu (Ho—H.) As+hse (Ho—Hs) As=0,
hes (Ho—H3:) Az +hss (Ho—H3z) As+hs (Ho—Hs) As+hss (Ho—Hs) As=0.

(7.5)

First, neglect the h's which involve 1/ 1 and take into account only terms which contain 1/ A2

The above equation then splits into two, namely;

hz (Ho—H3:) Az+hz (Ho—H;) As=0

hes (Ho—Hz) Az +hss (Ho—H3z) A3s=0
and

hi (Ho—H4s) Asthsy (Ho—Hs) As=0

hss (Ho—Hs) Avs+hss (Ho—Hs) As=0.

From the first set of equations, one gets A; = 0, A; = arbitrary, because Ho —H;= 0 for A = 0.
Now the determinant of the coefficients of the second set of equations may be shown to be zero. In
other words, the second set of equations yield arbitrary solutions for As and As. This means that
the second set of equations are inappropriate for determining the A's. We therefore consider the
first two equations in (7.5) to determine A4 and As. For non-zero solutions to exist, it is necessary
and sufficient that

hashss — hszhas # 0 . (7.6)

In order to prove the inequality, we proceed as follows.

We first note that

2

. c
lim b5 = = —5 75—
o c?+hys

Then we have

_%%hJZ =AEs +BE. ,
j=4,5

__AD;
2iw

hjs=AE¢ +BE: ,



Initial Motions of a Jacobi ellipsoid at the point of bifurcation 93

where
a3 1 e 12 1
T oa? b4k a’b? cih; b? a’+h; °’
j=4,5.
B.—L 1 _c? 1
7 a? at+h a* c?+thy
We have
__ ADH -
S= - 10t (hazhss —hsahas) = (EsE2—E.1Es) (AsBs—AsB4).

In order to prove (7.6) we only have to prove that neither Es E; —E1Es nor AsBs —AsB is zero.

We can easily show that

hohs (h:—hs)(a?—c?) (b2-c?)(a?-b?)

_ - N

E\Es—E:Es a’bict (c2+hs)(c2+hs)(a2+hs)(a2+hs) (b2+hs) (BE+hs) 0,
_ — (e 1 . 3c ) (a?—-b2) (hs—hs) N

AiBs—AsB: <a5 + ot + a'b? (a?+ha) (a2+hs) (c2+ha) (cE+hs) 0.

Thus we have proved the inequality (7.6).
Therefore the limiting form of the surface deformation is given by the initial member of the pear-

shaped figures. The limiting form of the surface deformation, ¢ thus takes the form

o (x,y,2z,¢t) =lim (aei* + e i*) L;M:N,+
A—0
deformations which oscillate before and beyond the point of bifurcation,

where ¢ and f are arbitrary constants to be determined by initial conditions. Let us put

(aei“+ ﬁeii“)wo =A,

_?37 (ae“’+ ﬁe—iu)tzo =B.

Then in the limit A — 0, we have
lim (aei**+ fe i*t) =A+Bt.
A=0
Thus, exactly at the point of bifurcation, the surface deformation ¢ develops with time t
according to
o(x, 9 2 t) = (A+Bt) LM:N:+ deformations which oscillate before and beyond the point of
bifureation,

where A and B are now arbitrary constants to be determined by initial conditions.
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