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Reconsiderations on The y-Parameter in
Thermodynamics of Polymer Solutions

Kenji KAMIDE

SYNOPSIS:; Historical evolution of the x -parameter, a characteristic parameter in thermodynamics of polymer
solutions is reconsidered. For this purpose, five solution models are classified in the route of evolution. A
general formula for x, in which the concentration-and molecular weight dependences are taken into account, is
semi-empirically derived. Formulas for the chemical potentials of the solvent and the solute, Apo and Ay; are
derived for polydisperse polymer solutions. The concentration-dependence coefficients are experimentally
evaluated by various methods. Cloud point curve (CPC)method and critical solution point(CSP) method,
both established by the Kamide and his coworkers, are described in some details. The both methods are
proved to be the best for accurate estimation of the first and second coefficients of the polymer concentration
01, prand p,. By use of accurate p1 and pz values we can determine ¢; at CSP ¢, ¢ which agrees with
experimental ¢, ¢. Phase-separation theory by Kamide, in which the polymolecularity of polymer and
p; are considered, is compared with experiments. By simulation of polymer solutions, based on the lattice model,
the concentration dependence of x is examined. The theory for quas-ibinary (polydisperse polymer/solvent)
system is extended to the cases of polymer blend and qausi-ternary system, compared with actual experiments.

1. Introduction

In the thermodynamics of the solutions (or the mixture) the most fundamental physical quantity
is the chemical potential of the solvent Ay and of the solute Ay, (i.e., the partial molar change of Gibbs
energy of mixing of the solute and the solvent) . Then, the determination of Apy (more generally, Ap; (i=1~m))
as function of pressure P and temperature T is our finantial goal of the study of thermodynamics of
polymer solutions. '

' There are various methods for evaluating Apo as demonstrated in Fig.1.>¢
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Figure 1 Various thermodynamic properties closely correlated with the chemical potential of the
solvent Ay, in a polymer solution. Unfilled arrows denote colligative properties; filled arrows denote
other properties.

At embryo stage of the polymer science (the 1920s~the 1930s)the colligative properties of polymer
solution was particularly important to characterize the molecular mass (molecular weight) and Ap,.
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48 Kenji KAMIDE

For this purpose, vapor pressure, boiling point elevation, and freezing point depression, were utilized (Fig.1).
They were rather less accurate. In the 1940~60s membrane osmometry and light scattering method
became popular. The liquid phase-separation and the critical phenomena were studied later. In
1990 Kamide stated in his books, ‘However, we dare say that a more comprehensive study on the
thermodynamics of phase equilibria and critical phenomena of polymer solutions, the main topics of
this book, started only in the late 1960s, because this kind of study requires computer technology,
which only at that time became readily available to polymer scientists. In particular, the
establishment of the theory, which permits the accurate theoretical prediction of the»spinodal,
binodal, cloud point and critical point for multicomponent polymer solutions is undoubtedly one of
the most significant milestones achieved in polymer science over the last 20 years.’

If once Ap;or Ay, is determined experimentally by some method we can calculate other quantities such as
vapor pressure, osmotic pressure, and critical point from poor Ay; determined in advance.

The above mentioned physical quantities are not only very important from the standpoint of pure
science but also play significant role in industrial production of membranes by casﬁng methods,
fibers by wet spinning, and paints, all of which are dominated by the thermodynamics of phase
separation of polymer solutions. The establishment of this kind of science is of paramount
importance for the process control, development of the new innovative processes and control of the
polymer supermolecular structure which governs the performance of membranes, fibers, and
paints.

Thermodynamics of polymer solution had, of course, its root in the classical thermodynamics
which had emerged in the late 19th century. Then, the first model of the polymer solutions was used
an ideal solution. Fig.2 demonstrates the routes of evolution of the polymer solution models, from
which the chemical potentials, Apoand Ap,, could be evaluated. Models were improved from Model I to
Model Vso as to minimize the disparity between the theoretical prediction and the actual experiments . Note that
rapid and eminent progress, in particular since 1950s, of measuring technology enabled to get useful information
from accurate measurements to judge adequacy of the theory. The y-parameter was at first time introduced in the
1940s by Flory®*® and Huggins®" ™ in Model I to represent the gap of Apo between real polymer solution
and Model II. Then, x-parameter is a characteristic parameter for the polymer solutions. The physical meaning
of x-parameter changed during evolution of medel. Now, in Model V, y-parameter is not simply the
polymer-solvent interaction parameter as Flory first supposed.

I had a keen interest in the phase equilibria of the polymer solutions when I was a university student at
Kanazawa in 1905s and my interest was strongly and continuously motivated to carry out the theoretical and
experimental studies on phase equilibria of the polymer solutions. This has resulted in the publication of two
books,*” five book chapters'™ and more than 50 papers **since 1968. As an extension of the basic theory, the
thermodynamics of membrane formation by solvent casting method was proposed.*™"

In 1972 I had an opportunity of being invited to speak of some theoretical and experimental results on the
phase-equilibrium as one of main lecturers at [UPAC International Polymer symposia, Helsinki.**” Prof.
P.J.Flory and Dr. M. L. Huggins, both the founders of the thermodynamics of polymer solution, sat on fore front
seats of a lecture room at The Finlandia Hall. Afterwards Huggins told me that you did what I had wanted to do.

In this article the historical development of the thermodynamics of polymer solution , particularly the
x-parameter, will be briefly reviewed.
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Reconsideration on The y-Parameter in Thermodynamics of Polymer Solutions
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Figure 2 Evolution of the solution model employed in thermodynamics of polymer solutions
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2. General equations of chemical potentials for non-ideal solutions consisting of
multicomponent polymer homologue and single solvent

2.1 Model I : Ideal solutionS’

When the chemical potential pi of a solution is expressed as

w,(T,P)=p!(T,P)+ RT Inx, 0

the solution is defined as ideal solution?. Here, pi(T,P) means the chemical potential of species i
at pure state, which is a function of temperature T and pressure P, and xi is the relative proportion

of 7th component in the solution (known as the mole fraction of species i),
N ;
> N, 2

X i

R=kNa is the gas constant, Ni the number of moles of species i, ¥Ni (EN) the total number of moles,
k the Boltzmann constant and Na the Avogadro’s number. Gilvert Newton Lewis named the solution
which satisfies eq. (1), as ideal solution.”®

Differnce of the partial molar enthalpies H; in the solution and H;" in the pure state AH; ™ is given by

AH;“=H;-H=0 ?3)
and difference of the partial molar entropy S; in the solution and S in the pure state ASis

AS#*=8;-S"=-Rinx; )

The molar heat of mixing A Q mix and the molar entropy of mixing A Smix are defined by:

AQmix =xi(H; - H;®) ®)
and
A Smix =¥xi(Si- Si% 6)

For ideal solution

AQY, =0 )
and
ASH =R Yxilnxi ®)

Solution of A Qg‘“ . = 0is called as athermal solution. Guggenheim”” wrote in his book that ' it was

commonly believed that all athermal solution should be ideal'. This view was openly challenged in a
discussion held by the Faraday Society in 1936, at which Fowler then suggested that this view could
be proved or disproved by a statistical analysis of a mixture of two kinds of molecules arranged on a
lattice, each molecule of the one kind occupying two neighbouring sites of the lattice and each
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Reconsideration on The y-Parameter in Thermodynamics of Polymer Solutions 51

molecule of the other kind occupying one site. This problem was attacked by Fowler and
Rushbrooke™ and by Guggenheim.?7.79

In an ideal solution the entropy change of mixing (i.e the mixing entropy) AQ‘;ﬂx depends only on

the mole fraction xi (eq.2) and neither a volumetric change nor a thermal change occurs on mixing.
In other words, an ideal solution, in which all components are randomly mixed, is absolutely
athermal. A more exact treatment suggests that the molecules of solvent and solute should have the
same size if Raoult’s Law holds.”™ ’

Comparison with experiments ; (a)For example, the methanol-ethanol system at 24.95°C follows,
within the precision of the experiment, Raoult’s law. This system is not an ideal solution due to an
extremely small, but significant, nonzero heat of mixing.5 (b) The partial molar entropy change of
mixing of the solvent A So,estimated for rubber - toluene at 30°C from the temperature dependence of the
chemical potential Ay, is some 15 ~ 20 times of AS, of ideal solution, AS(,i‘i.lSO

Gilbert Newton Lewis defined a ‘perfect solution’ as one which obeys (pi/pi® =x1)(pi, the vapor
pressure of ith component in solution : pi°, that in pure ith component liquid)?6 and Washburn called
a solution which obeys Raoult’s law throughout the whole range of compositions as ‘ideal’ .80
Mixture of benzene and ethylene chloride obeys Raoult’s law throughout the whole range of
compositions.8! ‘

2.2 Model II :Qansi-ideal polymer solution(random mixing~athermal polymer solution)’
(a) non-ideal solution
Solutions whose components greatly differ in chemical structure and in polarity exhibit remarkable deviations
from ideal solution.
The chemical potential of the component / in non-ideal solutions is generally given by
= pd(T,P) + RTIna ©
with aj=y;jxj. Here, aj and y; are the activity and the activity coefficient of the component /, respectively.
y represents the extent of deviation from the ideality and is a complicated function of x;(j #1) or the interaction

between solutes and solvent.
The entropy of mixing for ideal solution is expressed as

ASE = RY Nnx, | ®
According to the definition of the excess entropy of mixing,

ASE =S..~ S5 (10)
the excess Gibbs free energy of mixing per mole is derived as

AGls 1

AS...,x =Ap’, =RT Y x, Iny,
N

i

(b) quasi-ideal solution ; random mixing~athermal polymer solution

In ideal solution, the cohesive energy is completely homogeneous. If any heat of mixing is neglected, the
mixtures are called athermal solutions.

Consider a system consisting of N; polymer molecules, each occupying n sites, and N solvent
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molecules, each occupying one site, the total number of sites being N=nN, +N,,. The entropy of
mixing of disorientated polymer and solvent is given by

AS..=KN Inj +Ninj) _ 12)

Here, ¢, and ¢, are the volume fractions of the solvent and the polymer, respectively.
The partial molar entropies of mixing of the solvent and the polymer AS| and AS, are obtained by differentiat-
ing the entropy of mixing eq.(8”) with respect to the number of moles N /N, of solvent molecules and to the
number of moles N /N, of polymer molecules, as given by

OAS,. v OAS
=2=N  A§,=—=N,
N, S N 13)

AS,

respectively. From eq.’(10) we obtain

OAS... N, nN, N, 1 _
N, =—R{l + - = - _1
oN, {ogNﬁnN.} No+nN, No+nN, R{k’g(l H)+d n”"} a9

oN N.

OAS... . )
R {log No+nN,}+log N+ N, N.+nN, (a-m6.+ 1080~} 15
accordingly,

1 (16)
880=-R log(1-¢1)+(1-;)¢1
88,=-R{(1-n) 0y +log (1-4,)} an

Note that eq.(16) and (17) are valid for the solution of random mixing.
Excess Gibbs free energy of mixing AG;,E is given by eq.(11).

Comparison with experiments ; (a) Guggenheim noted that the plots of ratio P,/P,’ (P, the vapor pressure of
the solvent in solution, P,’ that of pure solvent ) versus ¢1 ( the volume fraction of solute) for rubber - benzene,
polystyrene(PS) --toluene, and PS - various solvents'®'!15%153
departs widely from Raould’s law."*" (b) The experimental data for PS/toluene at three different temperatures lie

within the experimental error on a single curve, indicating that the heat of mixing AQux of these solutions must be
151

could be represented by a single line which

very small. (c) In 1952 accurate measurements of the heat of mixing did not exist

2.3 Random mixing~ non-athermal polymer solution

In fact, an extraordinarily solute mole fraction was observed in the 1920s to early 1930s in polymer solutions
and these experimental facts motivated theoretical study by Flory,82~86 Huggins87~92 et al., based on the lattice
model, of the thermodynamics of polymer solutions. Usefulness of the lattice theory in study of the mixing
entropy ot polymer solutions were suggested also by Meyer and Mark.”** The so-called Flory-Huggins
thermodynamic theory of the polymer solutions was derived on the basis of the combinatory entropy of mixing,
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Reconsideration on The y-Parameter in Thermodynamics of Polymer Solutions 53

corresponding to the effect of dilution in the configurational entropy calculated on the lattice model and the
enthalpy of mixing of van Laar-Scatchard type.

(a) van Laar-Scatchard approximation *’

van Laar and Scatchard showed that the heat of mixing for regular solution which consists of Ny solvent
molecules and N, solute molecules is given by
AHumix = £zZNoN1/ (No +N1) (18)
where ¢ is the change in energy for formation of an unlike contact pair (0~1 pair) and z is the lattice coordination
number. Now consider N;polymer molecules, each consisting of n segments as solute. The heat of mixing AHyx
and the partial molar heat of dilution of the solvent and of the polymer AH; and AH,, respectively are

AHumix = £zNonN1/ (No +nNy) (19)
AH and AH, are defined by
O0AH
AH,=N, —— (20
He= oaN, )
OAH
AH,=N, — 21
H=N,> AN, @1
respectively. Combination of eq.(19) and eq.(20) or eq.(21) leads to
AH, = BN, ————— = BN, ¢, (22)
(N ot an)
N2
AH,=BN, L =BN,nf,* 23)
(o)
Here B=ez.

Note that van Laar-Scatchard euuation (eq.(18)) is derived on the assumption of random mixing.95

(b) Gibbs free energy of mixing of polymer solution AGy,, 67
Suppose the heat of mixing AH,,x and the entropy of mixing ASy;x are given by the relations eq.(19)
and (12), respectively. Here the volumetric change of mixing AVyx is implicitly assumed to be zero.

Substituting eq. (19) for AH,;, and eq. (12) for AS;, in the equation
AGle = AF mix = AHmix - TASmix (24)

at constant pressure and temperature, we obtain

AGpix=kT(Nolog @) +£z No®, (25)

The chemical potential of the solvent for the random mixing~non-athermal polymer solutions Ay, is
derived from egs.(16) and (20) and the chemical potential of polymer Ay, is obtained from eq.(17) and
eq.(23). Substituting eqs.(14) and (18) into eq.(26) gives eq.(27) for Apoand that of egs.(15) and (21)
into eq.(28) we obtain eq.(29) for Ap;.

Apo=AHy - TASy (26)
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=RT Iog(1-¢1)+(1-%) ¢1+k_BT¢72

=RT {log (1-®)+ (1- 1/m)®, + ®*} 27

Api =AH; - TAS (28)

Ap, =-RTin¢ +(l‘§£] ¢2+¢—3+--= -RT{n¢ FG-y )¢2+£' (29)
' 2 kT)|" 3 o2 T3

Thus, the y-parameter was first introduced into the thermodynamic theory for the random
mixing-non-athermal polymer solution. Difinition of y is some what difference between Flory and

Huggins.

For examples ;

1= B/RT (Flory)2 (30)
1 1,

x= ;(1 - ;) +B/RT (Huggins)87:88 (3D

The lattice theory of polymer solutions has following great advantages:65

(1) The structural regularity postulated in the theory has sound experimental diffraction
evidences (at least, with respect to the short-range regularity).

(2) The theory has explicit continuity with the theory of solutions of low molecules.

(3) Phase separation and critical phenomena of polymer solutions can be quantitatively
interpreted by the lattice theory (eq 16).

Comparison with experiments : Plots of log Po/Po® - log( 1 - ¢1) - (1 - 1/n) ¢1 vs. $12 for PS/toluene

and methylethylketone are represented by a straight line with positive slope. which gives y."°

Assumption in Flory’s Oth approximation theory
Flory’s theory of the zeroth approximationé5.82-8assumes :

(1) There is no volume change on mixing.

(2) The lattice possesses a definite coordination number (i.e., the number of nearest neighbours of
each segment per solvent molecule in the solution) z.

(3) The entropy of mixing ASmix can be calculated without reference to the possible energy change
caused by the pair formation (i.e., Bragg-Williams approximation?®?). In other words, the polymer
segments mix with solvent randomly and ASmix is the entropy of mixing of athermal solution.

(4) In the calculation of the total number of configurations ®, from which the combinatory entropy
of mixing is derived, the possibility that the nearest- neighbour lattice point to the lattice point
in question has been already occupied by polymer segment equals the probability of the case
where all the polymer segments are uniformly distributed over all the lattice points (i.e., the
average concentration approximation of the chain segment). This means that the two segments
belonging to the same polymer molecule are allowed to occupy the same lattice site. For
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rearrangement of the expression for @, Stirling’s approximation is applicable.

(5) The potential energy of the mixture is the sum of contributions from each pair of the closest
neighbouring segments (van Laar-Scatchard approximation?5.9).

(6) The heat of mixing AHuix can be calculated from the average contact numbers where all the
segments comprising polymer chains are completely disconnected and randomly mixed with
solvents (i.e., the average concentration approximation). In this case, the total number of
polymer-solvent contact pairs nc is given by

n¢= zdod1L (Average concentration approximation) (32)

where L is the total number of lattice sites, o is the volume fraction of the solvent and ¢1 the volume
fraction of the polymer expressed by eqs.(25) and (27), respectively. Here,  in the equation is
empirical parameter. '

Difference of the thermodynamic quantities(in this case, AG) between real polymer solution and the
quasi-ideal solution

The pseudo-excess chemical potentials for the solvent and n-mer,

Ao and ApTE respectively are given by egs.(33) and (34).

A poP® = RTx/¢p? (33)
and
HniPE = RT {'X(I)p(]_' ¢p) + I¢D1Xd¢P} (34)

Flory regarded AuoPE as Apo® (in this notation)(see eq.41 of reference 85)). This is apparently
overestimation of the excess chemical potential and should be substracted with RTIn No. Kamide’s
treatment, given in his book(chapter 12)° is rather obscure because he did not keep strict distinction
between ideal and quasi-ideal solutions throughout the chapter. Note that in derivation of eq.(25)
van Laar-Scatchard type heat of dilution is assumed and in other words AG™® is regarded to be exclusively
caused by the heat of dilution AH(EAHpy = AHp™™; A Hpi' - is the excess fnction).s3
¥-parameter is considered to be a constant independent of the concentration ¢oin the Flory-Huggins
(FH) theory. The actual experiments, however, show the concentration dependence of ¥ for numerous
polymer solutions(see, Fig 2). In this sense, X should be considered to be an empirical parameter,
defined by the equation.

Real polymer solutions have, in general, the following characteristics.”

(1) Heat of mixing AQp;x is not zero.

(2) Volumetric change in mixing AV, is not zero.

(3) Excess entropy of mixing AS;,Eis not zeto.

(#HTI/C, AT/C and Po/Py’ depends on concentration, whereITis the osmotic pressure, AT, the boiling

point elevation or freezing point depression, Po the vapor pressure of the solvent in solution
and Po?, vapor pressure of pure solvent.

The departure of the chemical potentials in real polymer solution from those eq.(16) reflects
unquestionably on the y-parameter(See, eq.(27)). Then, the concentration dependence of the
x-parameter may be, even not totally, but partly at least, due to inadequate hypothesis and
mathematical approximations employed in the original lattice theory”.

First approximation theory (Non-athermal solution)?
For non-athermal solutions(AH;,#0), Bragg-Willams and van Laar-Scatchard approximations
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(hypotheses (3) and (6), respectively) might seem more or less unrealistic and less appropriate.
Then several attempts to improve the Flory’s zeroth approximation theory were made by calucula-
ting the total number of configurations @ through the use of quasi-chemical equilibria method,
which is equivalent to the mathematical technique originally developed by Bethe® for the treating
order-disorder transitions in alloys. This method was occasionally referred to as the
Flory-Huggins first approximation theory. The disparity of values of AH, for
polymethylmethacrylate/ trichloroethylene® and AS, for rubber/ ethylacetatel®, both calculated on
the basis of the first approximation theory from their corresponding experimental data is
significantly larger than those by the zeroth approximation theory, indicating that the first
approximation is less reliable and cannot be recommended to use it for analysis?4101, " This might
appear to be somewhat surprising to note that allowance for hypotheses (3) and (6) does nothing to
improve the agreement with experiments.

Huggins' ‘new’ theory (1964)7.68

In his ‘new’ theory, Huggins10! assumed as basic tenet that the interior segments of a convoluted
molecule are partially shielded from contact with interior segments of other polymer molecules and
the shielding factor depends on the concentration. He derived theoretical equations for y, and y; (see
eq (49)) in closed form and as expansions in powers of the concentration, introducing a number of
physical quantities, such as molecular surface area, effective surface area, multiple contact factor,
shielding factor and empirical constant relating to shielding factor’s concentration dependence.
All of which cannot be determined by independent absolute method, although he described that
these quantities are “observable”. He considered that from experimental data of x and its
dependence on concentration and temperature one can evaluate all the parameters introduced.
That is, the parameters introduced in his theory are only adjustable parameters to fit the
experimental relations between y, ¢; and T. Note that in mid-1960s the methods based on phase
separation and critical phenomena were not yet established and there was lack of extensive and
reliable experimental data to judge the theories. Huggins!0! described “Testing of the equations
presented in the paper, using published experimental data, has been begun. The results will be
reported in due course”. Unfortunately as far as we know, there is no his succeeding paper.

Validity of hypothesis 67

The most probable inadequate hypothesis in the Flory-Huggins theory is that the total number of
solvent-polymer contacts is strictly proportional to the product ¢od,(hypothesis 6). For example, «
defined by AHy/(RT¢,) (eq.(64)) is expected, if the above hypothesis is accepted, to be constant over
wide ranges of T and ¢;, but it was confirmed by numerous experiments that k directly measured by
accurate calorimetry, depends strongly on both T and ¢,.'® Validity of the application of overall
average concentration approximation of polymer segment to estimate the heat of mixing has never
hitherto been tried to examine thoroughly due to mathematically extreme difficulty, although the
first approximation, of course, did also treat this problem in rather rough and insufficient manner.

Strictness and adequacy of the model, and mathematical complexity and approximation

As Flory10 pointed out at Fifteenth Spiers Memorial Lectures in 1970, sponsored by the Royal
Society, that “to be effective, any conceptual scheme, or theory of liquids and solutions must entail
approximations, either in model or in mathematical technique, even for the simplest of real liquids”.
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Mathematical approximations become more serious in the first approximation theory than in the
zeroth approximation theory and this is the reason why introduction of more adequate concepts into
the first approximation theory failed, on the contrary, to get rid of the disparity between the theory
and actual experiments. This means that even if seemingly more adequate models are used, we
cannot always derive accurate theoretical relations between the time-average observable physical
quantities like AG, AS and AH, and the structural, molecular and thermodynamic parameters (for
example, z, n and the enthalpy change of formation of an unlike contact pair A &) from the models
by traditional method of statistical mechanics, because the system in question is too complicated.
Since then, serious limit of further evolution of the lattice theory was widely recognized, although it
was largely successful in semi-quantitatively accounting for unusual (from the stand point of low
molecular weight solutions) behavior of AG, observed in polymer solutions, by differences in size
and shape of the species that make up the solution, and there has been no generally accepted
explanation of physical significance of the concentration- and molecular weight-dependences of x-
parameter, in spite of its experimentally unquestionable existence.

3. x-Parameter
3.1 Semi-empirical expression of y-parameter

The parameter y can be expressed in a power series of concentration as

X=1,0+pd, +P0," +--+p,0")=Xoli+ T p,4)) (35)
The condition that all the virial coefficients are concurrently zero at 6 point is
given by*’
==
Xo = 2 (36)
N T
=3 T BEe  RE (37
The molecular weight dependence of y, is phenomenologically
given by
Yo =Xoo 1+ k' /n,) (38)
The temperature dependence of k’ and yq in €q.(36) can be empirically expressed as
k'=k,(1-6/T) (39)
and
X =+ b/T ( 40)

where k;, a and b are the constants independent of temperature and 6, the Flory temperature.
Eq (39) was first proposed by Kamide et al.36.41
Equation (41), which is simplified form of equation (35) , is an adequate expression of
x from the experimental point of view.
=@ +b/T+ ¢ /TH(+ P11+ P2012) 41

The chemical potential of n-th polymer component Aun in multicomponent polymer solutions
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with constant y can be expressed as

Au,=RT{log ¢,-(n-1)+¢;n (l-n—ln)wn (1-9))°

(42)
Here, ny, is the number-average chain length (average number of segments in a polymer).
Then, eq.(42) can be generalized to this case as

Ap,=RT log¢n-(n-1)+¢1n(1-;1;)+xon(1-¢1)2
+X.0P111(—'-¢1 +o; )} 43)

X= %(1 +p161) (44)

with

Eqgs. (43) is a practical equations to describe the thermodynamic properties of multicomponent
polymer solutions. Eq. (43) was derived by Huggins-Okamoto 194 and Kamide-Sugamiyal3.

When y parameter of 7 th polymer component y; is expressed by eqs. (35) and (38), the heat of
dilution AH of the solution and the chemical potential of the solvent Ay, can be written by

AH = RT{XOO(I + f-](l + ip,¢f ]}%dﬁ 5
n j=1

Apo = RT{ln(l )+ (1 + —)¢1 + xoo(l + ﬁ][l +3p0 o ] } (46)

n n 3=l
Using the Gibbs-Duhem relation
> Ndp,=0 47)
(*J.Willard Gibbs deduced eq(47) in 1885105.106 an{ later, P.Duhem independently derived the same equation .107.18)

The chemical potential of n;-mer, Ap;, is expressed as

n

+n,0- ¢1)2x00[(1+ ){1+Z L (2(q+1)¢‘*}}

=]

+k{nll ]{1 o, z:’ﬁl[g’old)ll)}ﬂ (48)

where ¢, is the partial molar volume of i component of the polymer and =Y.

Ap; = RT|:ln¢i —(n; -1+ ni(l + -1-]4;1
n

If all the parameters in equations (46) and (48) are determined accurately by some adequate methods, A p,and
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A p; scalculated using these parameters, can represent satisfactorily the thermodynemical properties of the
polymer solutions over the entire range of T, ¢; and r (or n,)>® Note that the applicability of eq. (48) is not
restricted only to the lattice model used originally in the Flory-Huggins theory.

% can be assumed to be divided into an entropy term and an enthalpy term as

X=XstAn (49)
where
Xs™ . v
=5 -
2 (50)

=Kk= ki (G3))
Xaa T 51
K (accordingly, (s ) in eq.(51) can be semi-empirically expressed as
k=Ko + K1¢p + K2 ¢p 2+ ==+ (52)
with

k, =lim {AH,/(RT¢?)} (53)

Ko is the Flory enthalpy parameter at infinite dilution, AHo, the partial molar heat of dilution, «, k2,

concentration-dependence parameters.
Table 1 summarizes some characteristics of three typical solutions

Table 1 Some characteristics of three typical solutions”**

Solutions Characteristics Equation
ideal random mixing @)
(Model I') (solute=solvent in size)

zero heat of mixing 3)
quasi-ideal ‘random’ mixing - (12
(Model I') (solute>solvent in size) excess

zero heat of mixing X function 3
FH ‘random’ mixing I
(ModelIll) (solute>>solvent in size)

non- zero heat of mixing pseudo-excess (34)
real non- ‘random’ mixing (46)
(Model V) non- zero heat of mixing

3.2 Traditional method for experimental determination of X-parameter
y in the Flory-Huggins theory (see eq. (27)) can be experimentally evaluated by the following
steps.

(1) Determination of the activity of solvent ao by vapor pressure depression;
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o
Po=2a( Py (54)

or membrane osmometry,

RT
M=- w log a9
0 (55)

(2) Substitution of ay, determined by the above methods into the equation:

1
log a, = log (1 '¢1)+(1 -;) ¢1+X¢12
(56)
Originally, X was assumed to be independent of the polymer concentration ¢i.
¥ in the Flory-Huggins theory (see eq. (25)) can be experimentally evaluated by the following
methods.

4. Concentration dependence coefficients p; and p2 of the x-parameter

4.1 Experimental determination of the concentration dependence of the x -parameter

In the original Flory-Huggins theory, the %~ Parameter was taken as constant. During the late 1940s and early
1950s, the vapor pressure measurements and the isothermal distillation equilibration were applied for some
polymer / solvent systems, including polydimethylsiloxane (PDMS) in benzene'®, polystyrene (PS) in
methylethylketone (MEK)''® | PS in toluene''® and rubber in benzene.!"! Flory constructed plots of ’ against ¢1
for these systems (Fig. 111 of ref.86) and he stated that "in no other system so far investigated is the agreement so
good as for the rubber / benzene system for which ) is remarkably constant over a very wide concentration range" ,
and that "in those cases where either the polymer unit or the solvent possesses a dipole, as in the PDMS / benzene
and in PS / MEK systems, Y appears to vary throughout the concentration range" . Flory also agreed that the
available data is too little to justify generalization. Surprisingly, Flory's figure (Fig. 111 of ref. 86) has been
occasionally cited without serious modifications in many text books published later. It should be noted that the
experimental data cited in Flory's book is less accurate: p; values estimated from Fig.111 of ref.86 are 0.15 for
PS/MEK, 0.17 for PS / toluene and these values are compared with the values accepted as most probable (0.618
and 0.494) ,both evaluated by analyzing the critical solution points (see, Table 2) .

At present the parameter p; and p, in eq.(35) can be experimentally determined by (1) temperature dependence

of vapor pressure and membrane osmometry, (2) temperature dependence of second virial coefficient in the
vicinity of the Flory theta temperature 6, (3) calorimetry, (4) isothermal distillation, (5) ultracentrifuge, (6)
coexisting curve(i.e., binodal curve), (7) phase separation and cloud point curve and (8) critical solution point
(temperature T, and concentration ¢p° ).
Applicability of methods(1)~(5) are severly limited to rather rough estimation of p; only and the
method (7) by Kamide et aland the method (8) proposed by Koningsveld et al.''? and by Kamide and his
coworkers*” give the most accurate and reliable values of p; and p,. The method 8 was successfully applied by
Kamide et al. to the literature data on the upper and /or lower critical solution points of ten polystyrene-solvent
pairs and sixteen polyethylene-solvent pairs in very systematic manner.*®

In the above methods, p;and p, are assumed to be temperature independent. In fact this assumption seems to
be experimentally acceptable: over a wide temperature range covering both the upper critical
solution point (UCSP) and the lower critical solution point (LCSP) .
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Note that other methods than methods(6)~(8) are limited experimentally to a relatively low concentration
range and do not enable us to evaluate p; accurately. This is the main reason why in Flory's milestone text book,*
the values of the x -parameter obtained using the vapor pressure and (in part) the isothermal distillation
equilibrium for poly(dimethylsiloxane), polystyrene and natural rubber were constant with p,=ps=.... =0. The
phase separation method is applicable up to a moderately concentrated solution range, but the experimental
accuracy is unfortunately not high enough to estimate p, satisfactorily.

4.2 (a) Method 7:Cloud- point curve (CPC) method (Kamide et al. method)7.47

There is method for determining the parameters a, b and p; G=1,...n) from the cloud-point curve
and an empirical relétionshjp between temperature and relative amount of polymers partitioned in
polymer-rich phase p, with the corresponding theoretical ones.

Parameters a, b, pj(G=1,...,n) can be determined when the cloud point temperature Tepes
experimentally determined, coincides with that calculated by a computer simulation for phase
equilibrium due to eqs.(35) and (38)~(40), T,.

(1) Determine the relationships between pp(pp is the weight fraction of the polymer partitioned into
the polymer-rich phase to the polymer dissolved in the initial solution) and the temperature T
from the two-phase equilibrium experiments.

(2) Carry out a computer simulation assuming arbitrarily chosen values of p; j=1,...n) to obtain the
relationship between Yoo and py.

(3) Construct the relationship between yo and 1/T by using p, vs. T relationship obtained in step (1)
and 40 vs. p, relations obtained in step (2) and a and b determined as the intercept and slope of
Xoo vs. T plot, respectively.

(4) Calculate CPC (T, vs. §; relationship) using a and b obtained in step (3)

(5) Compute 8=Zy(Tepe- Tepe)/N (N is the total number of the solutions, for which the cloud point
was determined) and determine a set of pj G=1,...,n) to minimize & (where N>>n).

(6) Repeat steps 2-5 and evaluate a, b and p; where § is below the permissible limit. See <<Problem
4-21.d>> in ref.7 for the details of the simulation.

Fig.3 shows the relationship between p, and T(a), and between y, and T(b), both obtained by an
actual phase separation experiment for the system polystyrene (PS) in cyclohxane(CH). The
relationship (a) can be roughly apporoximated by a part of circle arc with p, approaching zero. The
most appropriate set of p, and p,, giving the minimum § (EZN(TCP,C-T.W)Z/N (N is the total number of the solution:
Tepe, caluculated T at SCP ; T, experimental T at SCP))(~0.1), could be determined as p1=0.643 and
p2=0.200. These values are very close to the corresponding values evaluated from the critical point
data.46 The cloud point curve, calculated with using these values of a’, b’,p1 and p2 can express
accurately the experimental data except for the threshold point region (¢,~0.07)(see, Fig.11). The
concentration dependence of the parameter y, evaluated for PS/CH system by many investigators, is
plotted in Fig.5. In the figure, the curves have been calculated from the p: and p2 values evaluated
from the critical points. The experimental data points can be reasonably represented by egs. (38),
(39) and (35) for n=2, in which terms higher than ¢, are neglected. That is, in the ¢, range of
0-0.15, both p2 and p1 are necessary to represent the concentration dependence of x and in a
comparatively dilute range, there is no sharp distinction in y between the investigators.

Table 2 shows the parameter determined for the system of polystyrene in cyclohexane.
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Fig.3(a) experimental relationship between p, and T and (b) temperature dependence of x, in eq.(33) for
solution ¢1° are 0.6 x102(V), 1.184 x 102 () and 1.737 x 10%(O), respectively. Full line in (b) is the theoretical
curve caluculated by assuming p;=0.62, p;=0.20 and ko=0.*’

4.2(b) Method 8 : Critical solution point(CSP) method” 4
The composition at the critical solution point ¢1° is given by eq(57)~(62)
(1) For single component polymer~single solvent system with constasnt 3 (Model II)

0= —m
' ol+yh &7
pi=0:i>0 m=1

Eq.(57) was first derived by Shultz-Flory and applied to the systems of polystyrene in cyclohexane
and polyisobutylene/diisobutyl ketone.113

(2) For multicomponent polymer~single solvent system with constant ) (Model IV)

o = 1 (Stockmayer) (58)
Yol+ n,/ nZ”2

where n,, and n, are the weight- and z-average degree of polymerization.'™*

Note that in Shultz-Flory and Stockmayer equations the concentration dependence of y-parameter
are not taken into account (p;=0, >0: i=1~m)

(3) For multicomponent polymer-single solvent system with o obeying eq.(33) : Model V
The parameter 3 can be phenomenologically expressed as eq. (33). At the critical point, the
following equations can be derived:46

1 1 c 2 . f
—_—t—2 4+ (G+2%H=0
o e Xo( ;p,(J %7 59
and
1 n n ja
e T X 2P I+ 28 =0
1-95)°  (n,65) Z ' (60)

Both y,° and ¢,° can be obtained concurrently through the application of eqs.(59) and (60), using a
numerical method, to the data of nw, n; and p; =1,2).
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Whether the concentration dependence of the parameter ), and the polymolecularity of the polymer should be
taken into account to explain the critical point and, in the former case, what would be the most reasonable values

of p1, P2,-:--Pn » can be decided by comparing the experimental critical volume fraction of the total polymer

(6. %(exp)) and the theoretical one (¢, (thes)) calculated using eqs. (59) and (60) (Kamide-Matsuda), eq. (58)
(Stockmayer), and eq.(57)(Shultz-Flory). An analysis of the data on ¢1°(exp), nzand nw would provide the
most ideal values of p1,pz ...pn as a combination yielding the minimum 3§, defined by

No

8=, (65 (exp) 47 (theo))? /N 61)
i=1

where Nj is the total number of samples.

Fig.4 The critical
experimentally determined, ¢1°(exp),

concentration

a) b)

plotted against the critical concent-
ration theoretically calculated, ¢1°

-

(=]
¥
T

2]
w

(exp)-10?
P
8

(theo) for UCSP (a) and LCSP (b) of the
polystyrene/cyclohexane system.
(A)Shults-Flory [eq.58]; (O) Kamide-

Matsuda eq.(61,62), pi=0.6, p2=0]; (@)

2,18
5, N

Kamide-Matsudalpi=0.623,p2=0.290];
( O ) Kamide-Matsuda [pi=0.642,
p2=0.190 for UCSP and pi=0.602,
p2=-0.347 for LCSPI. (See,Ref.46)

#¢ (cal)10?

Fig.4 shows the plot of ¢1¢ (exp) vs. ¢1¢ (theo) calculated for some typical combinations of p1 and p2
for the UCSP and LCSP of a PS / CH system. Evidently, the methods of Shultz-Flory (eq. (57) ) and
Stockmayer (eq (58) ) can not give reasonable ¢ic ; ¢1¢ calculated by the above two methods
overstimulates and is almost twice of the experimental data. Even if p; only is considered in
Kamide-Matsuda method the difference between ¢ic(exp) and ¢ic(theo) remains significant,
although improved remarkably. p2 as well as p1is necessary to calculate ¢1c.

4.3. Reliability of the experimental methods for determining p; and p2

The reliability of the methods can be confirmed by comparing p; and pz values estimated by
various methods. Table 2 demonstrates the parameters p1 and pz together with a, b, yo and 6 for the
PS/CH system. p; for atactic polystyrene (PS) in cyclohexane (CH) system was determined to be 0.630 by
osmotic pressure (34°C)1, 0.534 by ultracentrifuge (34°C)2, 0.610 by solution critical point (SCP)
(34°C)3, 0.622 by SCP(34°C)*, 0.607 by threshold cloud point’, 0.642 by SCP, and 0.600 by cloud point curve
combined with relationship between the relative amount of polymer partitioned in a polymer-rich phase and the
phase separation temperature’. The results indicate that no significant difference in p, exists among various
methods and p; values for atactic PS-CH system are averaged to 0.619+0.023, except for the ultracentrifuge
data.!t’
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Table 2 Temperature-dependence (a and b in t

concentration-dependence (p; and p2 in eq.(33)) pa

X, Flory entropy parameter y and Flory theta t

system (T=299K).7.47.62

Kenji KAMIDE

he equation X=a+b/T or a=0.5-\y,, b="¥,6) and
rameters of themodynamic interaction parameter

emperature 0 for atactic polystyrene/cyclohexane

Auther(s) Method a b p1 p2 W, oK
Krigbaum and Osmotic Pressure 0.2469 76.67 0.630s 0.480s 0.25 302.9
Geymer(1959116

Scholte(1970°117 Urtracentrifuge 0.2631 74.31 0.5341 0.4304 0.24 313.7
Koningsveld(1970)118  Critical point 0.2035 90.50 0.6106 0.9207 0.30 305.2
Koningsveld(1970)  Critical point 0.2211 85313 0.6.22: 0.289: 0.28  305.9
Kuwahara et.al.(1973)119 Threshhold cloud 0.2798 67.50 0.6073 0.512; 0.22 306.5
Kamide and Critical point 0.23 82.377 0.642 0.190 0.27 305.1
Matsuda(1984)*

Kamide et.al(1995)62 Cloud point curve  0.23 82.89 0.600 0.460 0.27 307.0

and p, vs.Trelationship

*pp, the relative amount of polymer partitioned in polymer-rich phase

*T temperature

Figure 5 shows the plots of y experimentally determined, against ¢1 for polystyrene in cyclohexane. The

figure shows a significant ¢1 dependence of x. 1y is
parameter.
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not constant, but should be considered to be an empirical

Fig.5 Concentration dependence of y parameter for
polystyrene in cyclohexane.5-7 (O) osmotic pressure,
distillation by and
Geymer!15,( @ ) vapor pressure by Krigbaum and
Geymer!15, (] ) ultracentrifuge by Scholte!16. Lines
a to f are calculated using p1and pz, in the equation

isothermal Krigbaum

x =x(1+pip1 +p2¢12 ), obtained by experiment, (a)
Krigbhaum and Geymer6 ; (b) Scholtel” ;{(c)
Koningsveld et al.17 ; (d) Koningsveld et al.l18; (e)
Kuwahara et al.l® ; (f) Kamide et al#. This
expression for y yields a better fit compared with
eq.(44).
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In the figure, the curves have been calculated from the p:1 and p2 values evaluated from the critical
points. The experimental data points can be reasonably represented by eqs. (38), (39) and (35) for
n=2, in which terms higher than ¢;2 are neglected. That is, in the ¢; range of 0-0.15, both p, and p1
are necessary to represent the concentration dependence of x and in a comparatively dilute range,
there is no sharp distinction in y between the investigators. Similar results have been obtained for
polystyrene/ metylcyclohexane system.46

4.4 p,, p2 values of polystyrene in various solvents8

Parameters in y determined by KM methods for PS/ in various solvents are summarized in Table 3.
The best and most widely used method for estimating p: and p2 are SCP method. p; values for
atactic PS in various non-polar or less polar solvents, whose upper or lower critical solution points
(UCSP or LCSP) data in literature were analyzed systematically by Kamide et al.48 according to
Kamide-Matsuda method46, are 0.618 (methylethylketone, LCSP), 0.615 (cyclopentane, UCSP),
0.631 (cyclopentane, LCSP), 0.642 (cyclohexane, UCSP), 0.638 (cyclohexane, LCSP), 0.602
(methylcyclohexane, UCSP), 0.649 (methylcyclohexane, LCSP), 0.673 (isopropylacetate, UCSP),
0.839 (isopropylacetate, LCSP), 0.643 (n-propylacetate, UCSP), 0.797 (n-propylacetate, LCSP),
0.650 (dimethoxymethane, LCSP), and 0.630 (trans-decalin, UCSP). p; values are averaged to 0.663
for all the above systems or 0.636 except two LCSPs of PS in iso- and n-propylacetates. It can
therefore be concluded that p; values of PS in non-polar solvents are close to 2/3, eq. (37), and are
slightly higher than the value (ca. 0.6) obtained in a computer experiment, but no significantly so.

Table 3 Concentration dependence of x-parameter p1, pz, Flory temperature 6, and the
entropy parameter y at the critical point for polystyrene-solvent systems at critical point4®

Solvent UCSP or P P2 0/x 7 Remarks
LCSP
Methyl ethyl ketone LCSP 0.618 -0.208 423.6 -0.44 Aliphatic
Cyclopentane UCSP 0.615 0.404 292.1 0.16 Aliphatic
LCSP 0.631 0.331 4285 -0.25 Aliphatic
Cyclohexane UCSP (0.642 0.190 305.1 0.27) Aliphatic
LCSP 0.638 -0.498 488.6 -0.58 Aliphatic
(0.602 0.347 487.2 -0.42)
Methyl cyclohexane UCSP (0.602 0.234 340.2 0.25) Aliphatic
LCSP (0.649 -1.183 487.9 -0.54)
Toluene LCSP 0.494 -0.922 550.4 -1.36 Aromatic
Benzene LCSP 0.388 -1.781 5243 -1.81 Aromatic

In Contrast to the systems of non-polar polymer in non-polar solvent, for PS-aromatic solvent
systems p1 value at CSP deviates significantly from 2/3. 48 For examples, p1=0.494 (toluene) and
0.388 (benzene)were obtained.48 Kamide et al. pointed out, from an analysis of YH NMR spectra
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with the aid of infra-red spectra and adiabatic compressibility, that the PS phenyl ring is stacked in
parallel to the solvent phenyl ring for PS/aromatic solvent system. This strongly suggests that
marked difference in the thermodynamic parameters, including the concentration dependence
coefficients p1 and p2 of the parameter y, and the Flory entropy parameter at infinite dilution ¥o,
observed for atactic PS in aromatic and aliphatic solvents, are accounted for, at least in part, by the
formation of some supermolecular structure in the former solutions, which may affect the entropy
term in the parameter x, and the entropy of mixing.120 Fig. 6 shows the plot of pz against p1, both
estimated by the KM method, for PS solutions. Here, the unfilled circle and rectangle correspond to
UCSP and LCSP, respectively. The point theoretically expected when Az = A3 = Ay =0 at 0
temperature, is denoted as a filled circle. It is obvious that the experimental points for UCSP are
not far from the theoretical point. On the other hand, the data points scatter for LCSP showing
negative pz.

Fig. 6 Plot of p1(KM) versus p2(KM) for polystyrene

r ° solutions; rectangle, LCSP; unfilled circle, UCSP; filled

ok 6'/2% circle, the point theoretically expected when

] VDE\ X A2, =As=As=0 at 6 : 1, methylethylketone (LCSP) 121 ; 2,

- g cyclopentane UCSP)121; 3, cyclopentane (LCSP) 121 ; 4,

Q“_'] ok :g cyclohexane (UCSP) 117.18.122 ; 5 cyclohexane (LCSP) 122
i,:71 6, methylcyclohexane (UCSP)122.123 ; 7,

- a3 methylcyclohexane (LCSP)12% 8, toluene (LCSP) 122; 9,
-Z_O-Dg o benzene (LCSP) 121 ; 10, isopropyl acetate (UCSP)
o 0:6 L OT8 ) 124 ; 11 , isopropyl acetate (LCSP) 12¢; 12, n-propyl

) acetate!?? ; 13, n-propyl acetate (LCSP) 124 ; 14,

dimethoxy methane (LCSP)125 ; 15, trans-decalin!2.

4.5 Role of concentration-dependence of ¥ on phase-separation and critical phenomena.

By lowering or rising the temperature of quasi-binary solution or by adding a non-solvent to the
solution (resulting in quasi-ternary solution) , the polymer-rich (or -lean) phase particles separate
from the mother solution (i.e, cloud point) and, after settling for a long time, the total solution
separates into a two-liquid phase . At constant temperature and constant pressure these two phases
are in equilibrium with each other. We define hereafter the phase of smaller ¢p. as the polymer-lean
phase and the phase of larger ¢p as the polymer-rich phase.

When the two phases are in equilibrium under constant T and constant P, the well-known Gibbs’
law applies, that is 105106 |

Apo) = Apo@ (62)
Apni(®) = Apni 2) (=1, ==, m) 63)
Here, the suffixes (1) and (2) denote the polymer-lean and -rich phases, respectively: Gibbs

discussed "the conditions of equilibrium for heterogeneous masses in contact when uninfluenced
by gravity, electricity, distortion of the solid mass, or capillary tensions" , showing that "the
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potential, defined by eqgs. for Auo and Aus, for each component substance must be constant
throughout the whole mass" 105.106 of osmotic pressure or vapor pressure . From the vapor pressure
and osmotic pressure measurements, Apo can be calculated using egs (9),(54),(55) and putting Apo
into eq. (27) allows na and y to be evaluated. In phase equilibrium studies, an accurate knowledge of
Apni is necessary in addition to that of Apo. Apni can be estimated from Apo through use of the
Gibbs-Duhem relation* (see, eq. (47)) , which, even for polymer solutions, should hold its validity at
constant T and constant P (see, for example, eq. (33)) . For a single component polymer / single
solvent system numerous researchers, including Flory , performed theoretical studies on two-phase
equilibrium mainly in 1950s. In these studies, the theory employed was based on a lattice model
and the calculations were only made under very specific conditions. No comparisons were made
with actual experimental data. For long time it has been considered without any doubt that the
solution theory does not permit the exact calculation of the partition coefficient ¢ and that ¢ is a
kind of underestimated parameter!?”. It is interesting to note that Flory stated in his classical book
"Principle of Polymer Chemistry" (1953)86 that "we need not undertake the incomparably more
involved calculation of the theory." From this statement, it is clear that Flory did not consider his
theory to be fully quantitative in nature.

In order to carry out the accurate simulation of two-phase equilibrium of actual polymer / solvent
systems for all components (m is usually of order of 102-105) eqs (62) and (63) should be solved
concurrently. As early as 1968 Kamide and his coworkers 89 and Koningsveld and Staverman 128~130
independently succeeded in carrying out accurate computer simulations of these equations.
Thereafter, Kamide and his collaborators?31~33353639.41 and Koningsveld et al.131~135 developed
more advanced and more rigorous theories for the quasi-binary(multicomponent polymers/single
solvent) system than those first published in 1968 and they established the necessary computer
simulation techniques in a more systematic way.

In Fig.7 the molecular weight distribution (MWD) curve of the polymer remaining in the
polymer-rich phase is compared with theoretical curves assuming varying values of the parameter
pt in eq. (45) (here, k' =0 and p,= **= pn =0 are assumed) , when atactic PS /
methylcyclohexane(MCH) solution is cooled to bring about the two-phase separation. As just
described before for computer experiment on model polymer solutions (k' = 0 and p,= *=* = pn =0 in
eq. (45)) , the MWD curve markedly depends and p1 values chosen 29 . It is generally accepted from
these figures that , PS / MCH can be reasonably approximated by a theoretical curve with p1 = 0.7
(dotted line) 29 . An adequate value of p1, with which the experimental MWD coincides with the
theoretical one, clearly varies in the range p; = 0.6~0.7 depending on the operating conditions (¢p°
and pp,) for PS / MCH and PS / cyclohexane (CH) systems.- The large discernible solvent effect on
the MWD of the fractions is evident and an increase in p1 value is just equivalent to lowering the
initial polymer concentration, ¢p°. 29
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Fig. 7 Molecular weight distribution of polymer partitioned into polymer-rich
phase g(M)« obtained from a solution of polystyrene in methylcyclohexane: Full line,
experiment; double chain line, computer simulation with pi=0.6; dotted line, computer
simulation with pi=0.7; broken line, computer simulation with p; =0.8; chain line,
computer simulation with p1 =1.0;; k'=0 and po= - * + =pa=0; a), ¢:°=0.0094, pp=
0.04 ; b) ¢,° = 0.0189, pp =0.07.

Fig.8 shows the plot of the polymer fraction in the polymer-rich phase ¢y vs. the relative amount
of polymer in polymer-rich phase pp62° The broken, chain and full lines mean the theoretical
calculations at ¢p%=1.89, 0.94 and 0.47%, respectively. The magnitude of ¢p(2) depends largely on p1
(ref.29).

Fig.8 Effect of the relative amount of polymer in
polymer-rich phase p, on the polymer volume
fraction ¢p(2) remaining in the polymer-rich phase :
Full line, theoretical curve at imitial polymer
volume fractions ¢p(2) =0.0047; chain

line, 0.0094 ; broken line, ¢°=0.0189; numbers
on curves denote the values of p; (cf. eq.(43) ; k’ =0
andp,= * * *=pa=0); A, 0, O, experimental
data for ¢p©=0.0189, 0.00942 and 0.0047 : a)
polystyrene (PS)/ methylcyclohexane; b) PS /

cvclohexane.

The volume ratio R of the two phases decreases drastically as pp increases. Fig.9 is an illustrative
case for a 0.94% solution. The difference in the experimental R values and the theoretical curve
with p1= 0.7 for PS /MCH and p1= 0.6 for PS / CH is within experimental uncertainty in the range
0p®=0.47 to 1.89% , irrespective of ¢p°.
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By the use of figures like Figs. 8 and 9 the magnitude of pican be more precisely estimated in
such a manner that the experimental point coincides well with the theoretical value at a given pp.2°

a) PS/MCH

Fig.9 Effect of the relative amount of polymer in
polymer-rich phase p, on the volume ratio of two
phases R for a) polystyrene (PS)/ methylcy-
clohexane and b) PS/ cyclohexane for initial
polymer volume fraction ¢,°,0=0.0094: Full line,
theoretical curves; O, experilnental data for

initial polymer volume fraction ¢;° = 0.0094;
numbers on curves denote p1, value (k' =0 and p:
=, == pn=0).

(o) 05 1,0

Except for the phase equilibrium and cloud point, all methods are limited experimentally to a
relatively lower concentration range and do not enables us to evaluate pz accurately. The phase
equilibrium method is applicable to more concentrated solution, but the experimental accuracy is
not high enough to estimate p2. Now, if one can employ the value of p1, estimated by other
experiments such as osmotic pressure, critical phenomena etc . , for a given polymer / solvent
system, the MWD(molecular weight distribution) of the fraction and any other characteristics of
phase separation can be completely calculated by using an electronic computer for the given
experimental conditions (the MWD of the original polymer, fractionation scheme, initial polymer
volume fraction ¢;°, pp) without any ambiguity.2®

Table4 summarizes the value of p1 evaluated.

Table 4 Values of p1 evaluated by phase separation phenomena and by successive fractionation for
the polystyre (PS) / methylcyclohexane (MCH) and PS / cyclohexane (CH)systems .6:29

From® p1

PS/MCH PS/CH
MWD 0.6~0.7 ca.0.6
bp@ (Fig.8) 0.66 +0.10 0.56 +0.05
R (Fig.9 0.69+0.10 '0.58 £0.05
SPF 0.74+0.10 -
SSF 0.72+0.10

a) SPF and SSF; successive precipitational and successive solutional fractionations,
respectively; ¢p(»), volume fraction of polymer-rich phase; R, volume ratio of
polymer-1lean phase to polymer-rich phase.
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There is an extremely large gap between oversimplified theories of phase equilibria of polymer
solutions and operational conditions of the fractionation in practice. In particular, the study of
operational conditions of the fractionation from the standpoint of solution theory, even though
qualitative, was limited to very special cases. The main reason for this limitation is that the
theory of the phase equilibrium on rigorous monodisperse polymer/single solvent syste_m cannot be
generalized by simple mathematical analysis to polydisperse polymer/single solvent system,
corresponding to the fractionation. It was only after many years, that by the use of electronic
computers, the principal mechanism underlying the fractionation was well understood.2 In 1968
Kamide et al.*° and Koningsveld et al.'? bridged this gap by using large (at that time) electronic digital
computers.7 )

5. Molecular weight dependence of x-parameter k’

5.1 Experimental determination of k’
Kk (eq.(38)) can be evaluated by the following means:$
(1) Comparison of the theoretical and experimental relations between the partition coefficient c(=

(1/m)log(dn@/ ¢n)), where ¢nis the volume fraction of n-mer and the suffixes 1 and 2 refer to the
polymer-lean, and polymer-rich phases respectively, both in phase equilibrium, and 1/n, (2)direct
determination of Y or Az, by light scattering or membrane osmometry. However ,we need y values
accurate to four significant digits in order to evaluate k’ with two significant figures. Such precision
is undoubtedly beyond the accuracy of actual experiments at present,® (3) comparison of molecular
weight distributions (MWD) of the polymer in the two phases with the theoretical curves calculated
assuming various values for k’.

5.2 Temperature dependence of k’ )

Fig. 10 shows the temperature dependence of k' for the PS / MCH system4! . In this figure,
Kamide et al. data for PS / MCH 136 except for p ,>0.88 and those for PS / CH 136 are shown for
comparison. The k' parameter increases linearly with an increase in 1/T. In other words, this
parameter becomes small as the temperature T approaches the Flory theta temperature. Kamide
and his coworkers demonstrated for the PS / CH and PS / MCH systems that k ' vanished at Flory
theta temperatures (307K and 343K, respectively) . Therefore, it may be concluded that the
molecular weight dependence of y changes its sign at the Flory theta temperature 6 and that k' can
be expressed by eq. (39) : koin eq. (39) is estimated to be— 104.2 for PS / CH system and— 132.0 for
PS /MCH system.
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Fig.10 Changes in the k' parameter with
temperature T: closed and half- closed
mark, polystyrene (PS) / cyclohexane
system; @ ,Kamide-Miyazaki 136 ; half
closed circle, Scholte by light scattering
137138 ; open mark, PS/ methylcyclohexane
system;[1,¢:°=0.50X 10- 2 ; & ¢p® =0.47 X
10- 25 O, 0=0.86X 10-2; ¥, $,0=0.94 ¥
10-2; A, ¢°=2.0X 10-2; V, ¢p%=1 .86 X
10-2,

i 1 1 1 L

30 32 34
(17103 (K™)

5.3 Role of the concentration-and the molecular weight-dependences in phase separation
phenomena®
Summarizing, the molecular weight dependence of the y-parameter has a minor effect, when
compared with its concentration dependence, on the phase separation phenomenon of polymer
solutions, but this effect is not always negligible and comes into play with the following
characteristics; the partition coefficient , the molecular weight distribution(MWD) of the polymer
with small py in the polymer-rich phase and/or with small p, in the polymer-lean phase, the
Mw/Mn(Mw,the weight-average molecular weight ; My, the number-average molecular weight)vs. Mw
relations for the fractions isolated by successive precipitational fractionation (SPF). It should be
noted at the limit pp—1, the polymers remaining in the polymer-lean phase are absolutely
independent of the p1 parameter and in the above regions, the k' parameter may play an important
role. We can interpret the previously observed small discrepancy between the actual experiments on
the PS / CH and PS / MCH systems and the theory, by the molecular weight dependence of the -
parameter. The fractionation efficiency decreases with an increase in the molecular weight
dependence of the y, parameter.
The effect of the k' and p1 parameters on the phase equilibriurn characteristics is very
complicated, but the comparative role of the two parameters is summarized in Table 5.20.29,136
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Table 5 Comparison of the effect of k' and p1 parameters on phase equilibrium characteristics.6

Phase equilibrium

characteristics Comparative role

Partition coefficient At limit of p,—»0 k'<p,®
At limit of p,—1 k'>p,*

Volume ratio R : k'<p,

Polymer volume fraction

in polymer-rich phase v, ., k'€p,

Polymer volume fraction

in polymer-lean phase v, (,, k'=p,

Nw() /Da(@ At limit of p,—0 k'<p,

At limit of p,—0 k'>p,
and large p,

At limit of p,—0 k'<p,
and small p, :

At limit of p,—1 k'>p,
and large p,

SPF  Initial few k'<p,
fractions

End few fractions k'>p,

Nw(1)/ Dty At limit of p,—0 k’>p,
At limit of p.—1 k'>p,
and large p,
At limit of p,—0 k'<p,
and small p,
SSF  Initial few k'>p,
fractions

© ® p, parameter is much more effective than k' parameter.
® k' parameter is much more effective than p, parameter.
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Figure 11. Cloud point curve of
polystyrene(Mw=2.4 X 105 and Mw /Ms=
2.8)/cyclohexanesystems2: O, experimental
data;! broad full line, theoretical curve
calculated using pi1= 0.60, p2=0.46, P¢=0.27
and 6 =307.0 K.  Fine full line, theoretical
spinodal curve ; @, theoretical critical
solution point. Here, a=0.23, b = 82.89, p1
=0.60 and p2=0.46 were utilized for

L 1 calculation  of spinodal curve and critical

l
5 1 0 15 solution point.
o x10?

Figure 11 shows the experimental CPC (open circle) and the theoretical CPC(bold line),

calculated by Kamide et al's method4” using the value of a ,b, p1 and p2 estimated in reference 65.

In the figure, the critical solution point (CSP) (filled circle) and spinodal curve (SC) (narrow full
line) also calculated by Kamide et al.'s procedure#6~48 using the same a, b, p1 and pz data, are shown.
As the theory requests, CPC and SC coincides at CSP. The theoretical CPC agrees well with the
experimental CPC except the threshold point region. Although as early as 1984 Kamide et al.
suggested that the above inconsistence at lower ¢, region may be due to the neglect of the molecular
weight dependence of x-parameter4’. Any effort to dissolve this disagreement in the line of the
above suggestion has ended in failure although Kamide was too optimistic in his monograph in
1989.5 So, this is even now undissolved problem.5

6. Flory Enthalpy Parameter

6.1. xandxo
The pair interaction Flory enthalpy pararmeter k is defined by the van Laar-Scatchard type
relation 86 :

k= AH. (69
RT ¢

where AHo is the partial molar heat of dilution with respect to the solvent.

Calorimetry allows direct determination of AHo, and thus k. The calorimetric experiments,
made by Fujishiro and his students, showed that k was not independent of T and ¢p, which was
firstly assumed in the original Flory-Huggins theory, but that it is a purely phenomenological
parameter, which depends on both T and ¢p!39.

K=xo + Kifpp + wodpz + - - - (65)

Ko ineq. (65) is given by
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K, =£i§3 {AH,/(RT¢})} (66)

and k1, x2 * * ° - are the 1st, 2nd, - - -order concentration-dependence parameters of «x.
Theoretically, k or simply ko can be evaluated by various methods, directly or indirectly as will be
described later . In other words , if good agreement between x or ko, values evaluated by various
methods is confirmed, the theory, on which the principles of the methods are based, is considered
thoroughly acceptable to explain all the thermodynalmic properties of polymer solutions. 48

6.2 Experimental determination of ko
(a) The temperature dependence of the chemical potential of the solvent, estimated from vapor
pressur and osmotic pressure, through use of the relation?s,

K, =lim {VRTO))}HA A,/ TYA1/T),, 67

where Apo is given by eq. (46) . The partial differentiation of Ao /T with respect to 1/T is carried
out under constant pressure and constant composition except the polymer.

(b) The critical phenomena (critical solution temperature T.and critical polymer concentration ¢y°).
ko is related to the Flory theta temperature 6 and the Flory entropy parameter®, through the
definition of 6 86.

k0 =0T,/T, (68)
with
v, =lim(AS, —AS,"™)/(R¢,")=lim(an, - AH, - TAS,™ )/(RT9}) 69)

ASois the partial molar entropy of dilution and AS¢eomb, the combinatorial entropy term.

6 and Wo can be evaluated from Tc (and 68;°) for a series of solution of polymers having different
molecular weights by the method described in section 2.7 [SF113 | Stockmayerll4,. Kamide -
Matsuda(KM.)# , and Koningsveld - Kleintjens - Schultz(KKS)17].

(c) Temperature dependence of Az by membrane osmometry or light scattering measured in vicinity
of the 0 temperature. T, is determined by
v, =(V,"/v*)8(@A,/8T), (Here, v is the specific volume of polymer) (70)
Then, it is possible to evaluate ko by putting 8 and ¥ ,obtained thus into eq.(70).
(d) Calorimetry
The heat of dilution A H and accordingly AHo can be directly measured by calorimetry.

Fig. 12 demonstrates schematic routes of determination for «o.53
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Vapor pressure

Osmotic pressure

Fig.12

!

Spo

+
3(8UIT)/R(1T)

Membrane osmometry
Light scattering

Flory enthalpy parameter ko from

experimental data

pressure, osmotic pressure, light
scattering and critical solution

points.

"/ 7 criticat
Solution:

/"'Or, Point

6.3 Molecular weight dependence of xo (polystyrene/ cyclohexane)

Table 6 summarizes ko and Flory 6 temperature for polystyrene-cyclohexane system.’

Routes of calculation of the

10! .
L atactic PS/CH system at 308K
100 -
N4 WM
o
w0k Ko=0.924 M,y 0989
10‘2 5 1 1 7 1 1 6 £ n~5 X I3 T 1 3
10 10" W0 10 10 10"
1 My
{1 Mn)

75

Fig.13 Log-log plot of Flory enthalpy parameter at infinite dilution x o , evaluated by the temperature

dependence of the chemical potential and second virial coefficient A2 in the vicinity of the theta

temperature and by calorimetry versus the reverse of weight-(or number-) average molecular weight

Mw(M,) for the atactic polystyrene / cyclohexane system: @ , Krigbaum(membrane osmometry (MO) ; B,
Krigbaum-Geyner (MO)116 ; half black circle, Scholte (ultracentrifuge)i6 ; A, Krigbaum-Carpenter
(light-scattering (LS))14!; V , Schulz-Baumann (L§)142 <, Kotera et al. (LS)143; O, Outer et al. (LS)140;

0, Miyaki-Fujita (LS)1#4; ©

, Fujihara (calorimetry)147 . Solid line, the equation(71).
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Table 6 Flory 6 temperature and enthalpy parameter k o at infinite dilution for the upper critical solution point
of atactic polystylene-cyclohexane system

Method 0 KoM, or (Data)
X M, X 10%)
at 308°C
(1) Chemical potential Membrane — 0.21(44) (Krigbaum-Geymer)'**
' osmometry
Sedimentation — 0.32(15.4) (Scholte)''®
equilibrium
(2) Ciritical point Shultz-Flory 306.2 0.75(-)
Stockmayer 306.5 0.80(-) (Koningsveld et al."’,,
Koningsveldet al. 305.2 029(—)} [0.28]* Kuwahara et al''"®.,
Kamide-Matsuda  305.1 027 026()  Sacki etal )
(3) Second virial Membrane 307.6 028(w)| [0.28]*  (Krigbaum)'*’
coefficient osmometry 307.6 0-27(°°)} (K’rigbaum-Geymer)116
Light scattering ~ 308.0 0.19(163) (Outer et al.)**
308.4 0.19(320) (Krigbaum-Carpenter'*'
307 ggzgz))) (Schulz-Baumann)'
307.4 022(w) | [026]  (Koteraetal)®
308 0.30(c0) (Miyaki-Fujita)'#+14
0.28(x0) 146
307.7 (Tong et al.)
(4) Heat of dilution ~ Calorimetry — (Fujihara)'"’

* Averaged value (See K. Kamide, S.Matsuda and H.Shirataki, Polym. J. 20, 31 (1988))
A log-log plot of x o against Mw 1 or Mn1for atactic PS / CH systems at 307. 2K is shown in Fig-
13. All data points available yielded a straight line given by (ref. 48).

K o E¥o) = 0.924 Mw (or My ) ~0.089 (71)

Eq. (71) is valid over the entire molecular range which is accessible experimentally from 6.2 x 103
t0 5.680X 107. Eq.(71) : is represented by the full line in Fig.1353. Therefore, we can conclude that
the most probable ko value is, in a strict sense, dependent on Mw (or Mx) , irrespective of the
method employed and that if eq. (71) can be expanded its applicability to Mw =, & at the infinite
molecular weight may be zero. This is an experimental indication that both the randomness in the
mixing of a polymer and solvent and the special homogeneity of the polymer segment density in
solution are expected to be realized in dilute solutions of polymer with infinitely large molecular
weight (i.e., AS¢=ASccomb). The fact that methods (1) - (4) give essentially identical «, values
within + 0.02 for a given PS sample in CH, strongly supports the validity of the modified
Flory-Huggins theory (Model V)48, .

6.4 Flory entropy parameter¥,
The Flory entropy parameter ¥, can also be evaluated from the critical point data as well as the
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temperature dependence of A [6.2.(c)]as follows :

(1)Kamide-Matsuda method46
1 %, .1_(1 - .l.)
T. 6y 68 2y

(72)

Using xo°, calculated from eqs. (59) and (60) and experimental T., we can determine 8 and ¥ from
the plot of 1/T. against y oc.46

(2)Stockmayer method114

1 1 1 1 n, . .. 1 ) I 1 1
— e (—— (=) F ()N (] —— (73)
T oy {2(nwm (nw) )X(nw,,z (nz) )} 9( 2\I/)

(3)Shultz-Flory method!13
When nw = n,is assumed, egs. (58) and (74) are reduced to the well known equations derived by
Schltz and Flory.

1 1 1,1 1 1 1 1 1 1
— = (—+ D)+ (- —) = —(—— + —) +— (74)
T. oy {Z(nw”2 ) 9( 2\|1) (-)w(nw”2 2nw) 0

7. New strategy to give theoretically reasonable explanation to y-parameter: Computer
simulation of lattice model
(a)Preface
Kamide and Shirataki®® attempted to examine the validity of average concentration approximation in
hypotheses (4) and (6), employed in the Flory-Huggins lattice theory of polymer solution, and investigated the
concentration- and molecular weight-dependences of ¥, (accordingly, the reliability of the expression of y, (egs.
(33), (36) and (37))for quasi-strictly regular solution (i.e., random mixing~non-athermal polymer solution®*
(Model I). For this purpose, computer experiments by applying Monte Carlo simulation method to the lattice
model, where hypotheses (1), (2) and (5) are strictly adopted, were carried out.

(b) Computer simulation 62
1) Suppose a long flexible linear polymer chain consisting of n identical repeating units, whose size is equal to
that of solvent molecules and are freely movable under the condition that these segments are linearly connected.
In this case, the repeating units are regarded as the segments. Then, the number of segments comprising a polymer
chain is for simplicity the degree of polymerization, n. Define the first segment by the segment at the chain end,
the second segment by the segment nearest neighbour of the first chain segment, - -, nth segment
by the segment of the another opposite chain end.
2) Consider the case where N, polymer molecules and N, solvent molecules are to be arranged on L ( =N;n + N,)
lattice sites in three dimensional most closely packed hexagonal lattice space (the lattice co-ordination number
z=12). In this case, the total number of lattice site of L is chosen as 40 x 40 x40=64000. Assign one segment,
which constitutes a polymer chain whose n is constant (n = 5~700) , to one lattice site initially empty. Assign at
random the second, third, fourth, -- -, nth segments of the first polymer chain to the lattice in the same manner as
the first segment under the condition that all the segments constituting a polymer chain is linearly connected in the
order of first, second, - - -, nth. This means that the succession of segments comprising the first polymer chain
must occupy a series of consecutively contiguous lattice sites and is a kind of self-avoiding walk.

77



78 Kenji KAMIDE

3) Repeat this kind of assignment of polymer chains. Total number of polymer chains to be assigned in the space
is given by the ratio ¢, L/n. After all the polymer chains are assigned to the lattice sites, place L (1- ¢ ) solvents
molecules on the hence left unfulfilled lattice sites (i. e., one solvent molecule to one site). Then, the polymer
solution having a specific configuration (in other words, at a specific instant) is hypothetically prepared. Count the
number of the closest neighbor solvent - segment contacts existing in the above solution, n..

4) Apply first the reptation movement to all the polymer molecules simultaneously and apply next the crank-

shaft movement to them. Each polymer chains may be rearranged to another internal configurations.

The reputation and crank shaft movements are schematically demonstrated in Figure 14. This operation is defined
as one step. Avoid any possible multiplicative arrangement of two or more segments belonging to the same or
different chain.

Reptation motion

Fig.14 Schematic representation of two types of chain motion in hexagonal lattice.

The total number of polymer segment-solvent pairs at equilibrium state nce as functions of the
concentration ¢; and the degree of polymerization n of the polymer solutes. Two types of chain
motions (crankshaft motion and then reptation motion) were applied to all the polymer molecules in
the lattice simultaneously and this operation (crankshaft-reptation motions) was repeated 1500
times. Any possible multiplicative arrangement of two or more segments belonging to the same or
different chain was avoided.

(c) Theoretical background 627

N is given by
Ne.o/(Goh1L)=Cy (1+Zpith1’) (75)
with
C=limn., /(¢od:L)=Co(l+Kk /n) 76)
Co=Rb/Ae 7

When the average concentration approximation (hypothesis (4)) is applied, Cy and p; are given

by
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. Cx=z ' (78)

pi=0 (79)

Then, from the plots of Cx vs. 1/n and the plots of n./(do$:L) against ¢; the validity of the expression of ¥ (egs.
(33), (36) and (37)) could be confirmed by the computer experiments (Figs. 4a, 4b and 5 of reference 65). If egs.
(33), (36) and (37) are applicable, k’ and p; can be determined from the above plots, respectively.

(d) Results %

The plots of n. as a function of step number n=10 in the ¢, range 0.02 to 0.24 show that n. increases with step
number i, approaching to an asymptotic value. The step, at which n, attains its asymptotic value, i,, is smaller for
solutions with lower n(degree of polymerization) and of lower ¢,: For example, i,<50 for n=10 and ¢, =0.24, i,
<15 for n=10 and ¢, = 0.10, i, <400 for n=100 and ¢, =0.24 and i,<65 for n=100 and ¢, =0.10. It was confirmed
that i, <500 holds without exception under the whole conditions employed. Therefore, approximately constant
values are obtained within probable experimental uncertainty. n. . was evaluated as average n. between 500 - 1500
steps. It can be considered that an equilibrium state is attained quickly for solutions, with smaller n, of lower ¢,.

Fig. 15 shows the relations between n.¢/( ¢o ¢ L) and ¢y, for given n(n = 5~700) . n. o/( ¢o ¢ L) is, to a fairy
good approximation, in liner proportion to ¢, over wide range of n, suggesting a significant concentration
dependence of x-parameter. Then, eq 75 can be simplified into

N _ oo . 75
e c.(l + p,¢,) 75%)

Experimentally it has been confirmed for polyisobutylene (PIB) - benzene (10, 24.5, 25 and 40°C'%), atactic
polystyrene (PS) - methyl ethyl ketone (25 °C)’®), atactic PS - cyclohexane®*’ that  -Parameter is linearly
proportional to ¢, in the range 0< ¢, ~ 0.3 and p; is obtained as an initial slope of the plots of X, vs. ¢,. Note that in
this study the upper limit of ¢, was 0.24. Therefore, it is expected that only p; should be a major significant factor
contributing to the plots in Fig.15°*. Full line in the figures were obtained by applying the least-square methods
to the data, using eq 75. Table 7 collects the values of C, and p, estimated from Fig.15.

10

Fig.15 Relationship between nce/(¢od,L)
and ¢, for n=100-700.%

0 005 0.1 ¢p0.i5 0.2 0.25
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p1 first increases rapidly with an increase in n, then slowly approaching an asymptotic value (ca. 0.6) at n=200.
Inspection of the table shows that successive connection of the polymer segments brings about the concentration
dependence of y-parameter. p; values of PS in non-polar solvents are close to 2/3,theoretically predicted at T=0
for random mixing-non zero heat of mixing solution®” and are little higher than the value (ca. 0.6) obtained in this
computer experiments, but no significantly so.

Computer experiments on random mixing-non-athermal polymer solutions indicated that the average
concentration approximation hypothesis cannot be approved even if random mixing is assumed and egs. (35), (38)
and (39) appears to be of correct form to represent the y—parameter. In other words, the hypothesis employed in
Flory-Huggins theory can never be accepted even in the quasi-regular solutions and the concentration- and
molecular weight-dependences of the y-parameter, observed in actual experiments, can be explained reasonably, if
the consecutive characteristics of linear chain molecules is strictly considered.

Table 7 Dependence of ¥ on ¢, and n for random mixing-non-athermal polymer solution(computer
simulation) :

n Cn p1 'g n Cn p1 K
122 ~ 0.39 100 8.65 0.556 0.49
5 9.821 0.247 0.709 200 8.61 0.591 0.23
10 9.25 0.343 0.76 300 8.62 0.564 0.70
20 8.92 0.439 0.74 500 8.61 0.544 0.58
30 8.80 0.480 0.70 700 8.60 0.539
40 8.75 0.518 0.70
50 8.72 0.522 0.70
60 8.67 0.556 0.49 © 8.6=Co® 0.54 0.6~0.7
a: estimated b: estimated

8. Phase equilibria of polymer blend (P1/P2)
8.1 Monodisperse polymer Py, monodisperse polymer P»

Scott148 is probably the first who carried out a theoretical study on the phase equilibria of the
polymer solutions consisting of two kinds of polymer with the different chemical compositions
(polymer 1 and polymer 2), without solvent (i.e., quasi-binary polymer mixture). He derived, based
on the Flory-Huggins solution theory, the relationships giving the chemical potentials of
monodisperse polymer 1 and monodisperse polymer 2, Apx and Apy:

Apy, =RTIn¢, +(1-X/ ), + XX11¢;] (80)
Ay =RT(Ing, +(1- Y/ X0, + Yo, ] 8D

where X12 is the thermodynamic interaction parameter between polymers 1 and 2, X and Y are the
degree of polymerization, DP (in a strict sense, the molecular volume ratio of the polymer and the
lattice unit (the polymer segment)), and ¢, and ¢, are the volume fractions of polymers 1 and 2 (¢,+
®,=1). The equations for ,12, ¢, and ¢, at the critical solution point (CSP) are:
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0 Apx/ 3 ;=0 and 3 *Apx/ 3 ¢;°>=0 (or 3 Apy/ 3 g=0 and 3 *Apy/ 3 §,2=0) (82)
and finally we obtain

X =1/2(X7 +Y Y (83)
O =Y /(X'? +Y"?) (84)
oS = X2 /[(XM: +Y"?) (85)

Note that at CSP the spinodal curve (SC) and the neutral equilibrium conditions should be satisfied
concurrently, for the P1/P2 system.

Scott predicted that values of y;, for these systems are several digits smaller than those for a mixture of two
low molecular weight liquids(y;2~2.0) and those for polymer-solvent systems (x;,~0.5).®

8.2 Polydisperse polymer/ polydiperse polymer(P:/P2)

(1) Theory

An attempt to generalize CSP equations (egs.(83)~(85)) for two monodisperse polymer mixture to the case of
multicomponent polymer 1/ multicomponent polymer 2 systems was made by Koningsveld et al.'*. They
derived the equations of spinodal and neutral equilibrium conditions (Egs. (12) and (13) in their paper) for
systems of multicomponent polymer 1/ multicomponent polymer 2/ single solvent. As Kamide et al. pointed
out,”’ they did not show the detailed mathematical derivation of the equations. Koningsveld et al. described that
the spinodal condition for the multicomponent polymer 1/ multicomponent polymer 2 system was derived as Eq.
(23) of their paper after multiplying Eq. (12) of their paper by ¢, and reducing ¢, to zero. But we should first

define the mean Gibbs free energy of mixing AG,, (See eq. (86)) >’

my x;
AG iy = RTL| 3 i{

i=1 i

m Gy,
In ¢, +Z}‘%"ln¢n +X12¢1¢2] (86)
=

j

where L is the total number of lattice site (=2 X{Nx;+%;Y;Ny;; Nx; and Ny; are the numbers of Xi-mer of
polymer 1 and that of Yj-mer of polymer 2, respectively), m; and m; are the total numbers of the
components consisting polymer 1 and polymer 2, ¢x; is the volume fraction of X;-mer of multicomponent
polymer 1, ¢v; is the volume fraction of Yj-mer of multicomponent polymer 2, and ¢, and ¢, are the total volume
fractions of polymer 1 and polymer 2 as defined by the relations ¢;=Zi¢x; and ¢,=2;0v;. The first and the second
terms in the right-hand side of eq. (86) are the combinatory terms and the third term is the term relating to the
mutual thermodynamic interaction. ~Shirataki et al.>’ derived straightforwardly the equation of spinodal from the
determinant (eq.(87))

|AG/|=0 (87

constructed using AG,, (¢q.(86)). They described that the equation of the neutral equilibrium conditions (eq.
(24) in their paper) for two different multicomponent polymers can be derived using a method analogous to the
spinodal condition. The equation should be rigorously derived from the determinant (Eq. (88)) of the neutral
equilibrium conditions.
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|aG’|=0 (88)

We can take into consideration the concentrarion (in this case composition)dependence of x;5,
n,
0 . 89
X1z = X12[1+Z(P1,t¢i +P2,t¢tz)] ®9)
t=1

where t=1,2,...n, and n, is the highest order number of concentration dependence parameter taken into account in
the calculation. Eq. (86) is symmetrical with respect to the exchange of polymer 1 and polymer 2. The
coefficient y;,’ in Eq. (86) is a parameter, independent of ¢; and ¢, and inversely proportional to T. The
coefficients p, ; and p, are the parameters of concentration dependence. ~After combining eq. (83) with eq. (86),
we can obtain Apy; and Apy; in the case when y;, is concentration-dependent are expressed as for polydispersé
polymer 1/polydisoerse polymer 2.

Aux, = RT[ln‘bx, - (X| - 1) + X{l - Xi}bl + X.(l - YL]‘bz + X:Xlz‘bi] (90)
Apy =RT[In¢, - (Y, -D+ Y,.(l - XL}')‘ + Yj(l - Yi}pz +Y,1,,67] (G

When both polymer 1 and polymer 2 are monodisperse (i.e., single component), eqs.(90) and (91)
atraight forwardly reduce to eq.(80) and (81).

(2) Comparison with experiments

To confirm the reliability of the theory of phase equilibria of multicomponent polymer 1/multicomponent
polymer 2 systems (i.e., quasi-binary systems) and the method of computer experiment based on Shirataki et.al’s
theory (See H. Shirataki, S. Matsuda and K. Kamide, Brit. Polym. J. 23, 285 (1990); ibid. 23, 299 (1990); Polym.
Int. 29, 219 (1992)), CSP has been determined experimentally for the quasi-binary mixtures of poly(ethylene
oxide) M,=647, M,/M=1.15) and poly(propylene oxide) (M,,=2028, M,/M,=1.08 and M,=2987,
M,/M;=1.13)(Table 8). x,, and the concentration dependence parameters for the above quasi-binary systems were
determined and cloud point curve (CPC), phase volume ratio R and CSP values calculated on the basis of the
theory are in good agreement with the values determined experimentally (See H. Shirataki, S. Matsuda and K.
Kamide, Brit. Polym. J. 23, 299 (1990)). Figure 16 shows the experimental and theoretical CPCs and CSPs for
the system A and B in Table 8. The full lines are the theoretical CPCs calculated taking into consideration the
concentration dependence of x;,. The theoretical CPCs are in excellent agreement with the actual experiments
for both systems. The parameters in eq. (89) were found to be p,;=-0.0917, p,,=0.0022, a=-0.3125 and
b=131.59 for System A and p, ; =—0.1120, P12=0.0027, a=-0.2045 and b=98.09 for system B.

Table 8 Comparison of experimental and calculated CSPs

System Polymer d1¢ (exp.) doc(cale) TCSP(exp.)/’C  TCSP(calc.)/"C
A E-600/P-2000 0.5875 0.5841 46.3 47.0
B E-600/P-3000 0.613 0.6264 59.8 61.2

(See H.Shirataki and K.Kamide, Polym.Int. 34,73(1994)).
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70 T T T T Fig16 Theoretical CPC and CSP for
PEO/PPO systems. Solid lines,

6of } Theoretical CPC  with p;=0.0917 and

O sol ] p1s=0.0022 for E-600/P-2000, and with

S p1i=0.1120 and p,,=0.0027 for E-6--/P-3000;

§ s} ] (@) and (o) experimental CPC for

E-600/P-3000 and E-600/P-2000. (w) and

aol €-600/P-2000 N (o) experimental CSP for E-600/P-3000

and E-600/P-2000. (¢) and (A)

20 A i L N theoretical CSP for E-600/P-3000 and

0 02 04 06 08 1 E-600/P-2000. (See H. Shirataki and K.

- Kamide, Polym. Int. 34, 73 (1994)). 61

9. Phase equilibrium of quasi-ternary system: polydisperse polymer in mixed solvent
(P1/S2/S1)

Kamide and his coworkers developed the theory of phase phenomena, including chemical potential, spinodal
condition, neutral eﬁuilibrium, and critical condition for quasi-ternary mixtures such as polydisperse polymer(P;)/
solvent(S;)/solvent(S;); polydisperse polymer(P,)/polydisperse polymer(P;)/solvent(Sy), and polydisperse
polymer(P,)/polydisperse polymer(P;)/polymer (P;). Here, they assumed that (a) xo1, X0 and y;2 are
independent of concentration and molecular weight of polymers, (b) the molar volume of solvent and
the segment of polymers 1 and 2 are the same, (c) solvent, polymers 1 and 2 are volumetrically
additive, and (d) the density of solvent is the same as that of polymers 1 and 2.

Fig.17 demonstrates the phase diagram, theoretically constructed for P,/P;/S; system.

Fig.17 Cloud point curve (full line),
spinodal curve (broken line) and critical
solution point (unfilled circle) of a
quasi-ternary system. Original polymer,
Schulz-Zimm type distribution
(0w=300, no/n;=2.0); x12=0.5, %13=0.2
and ¥3;=1.0. (See K. Kamide and S.
Matsuda, Polym. J.18, 347 (1986)).49
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10.Conclusion

1. x -parameter is not a constant, but functions of ¢; and n as expressed as eqs.(33), (36~38) .

2. Model V (in Fig.1) is recommended to utilize for further study.

3.Colligative properties including osmotic pressure, vapor pressure, and light scattering are
significantly influenced by p(i.e, the first term of ¢; ). On the other hand, phase equilibrium, critical
phenomena are explained in terms of p; and p,.

4. Experimental method for determining with high reliability and accuracy are methods, based on critical
phenomena (cloud point, solution critical point).

5. Formula for the chemical potential of solvent Ap, is most adequately expressed by eq.(46).

6. Using Ay expressed by eq.(46) we can describe all colligative solution properties and phase equilibrium
very consistently.

7. The critical phenomena, in particular, critical point (¢;°) is overestimated and the Flory's entropy
parameter ¥, derived from the phenomena , is much larger than that by other methods , if the
concentration-dependence is not considered.

8. ¥y, obtained by analysis on critical point with consideration of p; and p, coincide with that by light scattering.

9. Effect of the polymolecularity is smaller than that of consentration-dependence of x-parameter on critical point
of the solution.

10. The Flory’s enthalpy parameter at infinite dilution x,, estimated for PS/CH by various methods and various
authors, yields a straight line of long-long plot of ko vs. M,y ; the weight-average molecular weight.

11. ko at infinite M, may be zero.

12 Successive connection of the polymer chain contributes significantly to the concentration-dependence of
x-parameter. In other words, average concentration approximation hypothesis cannot be approves even if
random mixing in assured.

13. Even at present time more than 60 years after the first paper of the Flory-Huggins theory, the atactic
polystyrene(PS/CH) system is almost the only system for which all the thermodynamic parameters necessary
for describing Ap, such as ps, p2, 8, o and o are determined comprehensively.

14. Then, x for PS/CH system can be expressed as function of temperature(T in °K) and polymer concentration
(volume fraction) as
x={0.23+ 82.89/T}(1+ 0.6000¢p + 0.460 ¢p 2)

15. The chemical potential of the solvent in polymer solution Ay, is generally given'® by

Ap0=RT{ln(l—¢p) -5 vp+x¢§} @7
Np o

16. Theory of thermodynamics for quasi-binary polydisperse polymer/solvent system was established and
applied successfully to phase-equilibrium.
17. The theory was extended to the cases of polymer blend system and quasi-ternary system.
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