創傷被覆材における近赤外線透過率の検証

吉川義之* 城野靖朋* 滝本幸治* 植村弥希子** 辻下守弘*

Verification of near-infrared transmittance in wound dressings

Yoshiyuki YOSHIKAWA* Yasutomo JONO* Koji TAKIMOTO* Mikiko UEMURA** Morihiro TSUZISHITA*

*奈良学園大学 保健医療学部 (〒631-8523 奈良県奈良市中登美ヶ丘 3 丁目 15-1)

*Department of Health Science, NARAGAKUEN University. (3-15-1, Nakatomigaoka, Nara-shi, Nara, 631-8524, JAPAN)

**関西福祉科学大学保健医療学部(〒582-0026 大阪府柏原市旭ケ丘 3 丁目 11 番 1 号)

**Department of Health Sciences, Kansaifukushikagaku Univirsity (3-11-1, Asahigaoka, Kashiwara-shi, Osaka, 582-0026, JAPAN)

要旨

本研究では、創傷被覆材(ドレッシング材)の近赤外線透過率を検証することでドレッシング材管 理下においても近赤外線照射を可能とし、褥瘡の補完療法を実施するための基礎的資料とすること である。方法はスーパーライザーPX(東京医研)施行中のドレッシング材の近赤外線透過率を測定 した。照射条件は波長 0.6-1.6 µm の複合波長,光出力は 100%とした。ドレッシング材はフィルムド レッシング (FD) 材 2 種類, ハイドロコロイドドレッシング (HC) 材 2 種類, ポリウレタンフォー ムドレッシング (PF) 材 5 種類, ハイドロポリマードレッシング (HP) 材 1 種類を使用した。HC 材, PF 材, HP 材については, 滲出液を含まない状態(乾燥している状態)と滲出液を含んだと仮定 した状態(生理食塩水を吸収させた状態)の2パターンとした。測定はそれぞれのドレッシング材 に対して 5 回ずつ実施し、近赤外線透過率の平均値を算出した。その後、ドレッシング材なしでの 出力で除した値を透過率とした。さらに、測定誤差について検討するために Bland-Altman 分析を実 施した。その結果,FD材の透過率は94~97%であった。乾燥している状態の透過率は,HC材87~ 96%, PF 材 13~30%, HP 材 38%であった。生理食塩水を吸収させた状態の透過率は HC 材 49~ 66%, PF 材 24~55%, HP 材 33%であった。Bland-Altman 分析の結果, 今回の測定方法による反復 測定時の誤差は偶然誤差であった。FD 材については約 95%の透過率があったため,FD 材のみであ れば十分な近赤外線が創部へ到達すると考えられる。しかし、HC材、PF材、HP材は13~96%と透 過率に差があったため、使用ドレッシング材の透過率を計算した上での照射強度の設定が必要であ ることが示唆された。また、HC 材については、水分を吸収することで透過率が減少し、PF 材につ いては水分を吸収することで透過率が増加した。それゆえに、ドレッシング材の種類によって滲出 液の量を考慮した使用の必要性があることも示唆された。

キーワード : 光線療法, 創傷被覆材, 褥瘡

1 はじめに

日本褥瘡学会「褥瘡予防・管理ガイドライン第4版」にお いて近赤外線療法は、創の縮小をはかる物理療法として推 奨されている¹⁾。創傷治癒における近赤外線療法の効果とし ては、コラーゲン合成の強化²⁾や線維芽細胞の分裂の促進³⁾、 組織の上皮化⁴⁾、さらにサイトカイン産生の調整^{5,6)}などが 報告されている。

一方,褥瘡などの慢性創傷の創傷治療の基本は,創面保護 とともに創面環境調整(wound bed preparation:WBP)と湿 潤環境下療法(moist wound healing:MWH)を行うことであ り,皮下組織に達する深い慢性創傷に対して壊死組織や不 良肉芽が多い時期(黒色期,黄色期)はWBP,肉芽形成や 上皮化が行われる時期(赤色期,白色期)は MWH とするこ とが推奨されている^{1,7)}。中でも MWH は創面を湿潤した環 境に保持する必要があり,創傷被覆材(ドレッシング材)を 用いた治療を実施することが多くみられるため,物理療法 を行う際にドレッシング材の上から照射することがある。 それゆえに,慢性創傷に対して物理療法を補完療法として 実施する際にはドレッシング材の透過率を調べる必要があ る。超音波療法においては,ドレッシング材の超音波透過率 を検討⁸⁾し,ドレッシング材の透過率から照射強度を計算し て創の縮小効果を示している報告がある^{9,10)}。それゆえに, 慢性創傷に対して近赤外線照射を補完的に実施する際にも, 近赤外線のドレッシング材透過率を検討する必要があると 考えた。 そこで本研究の目的は、ドレッシング材の近赤外線透過 率を確認することでドレッシング材管理下においても近赤 外線照射を可能とし、慢性創傷の補完療法を実施するため の基礎的資料とすることである。

2 方法

2.1 使用材料および使用機器

対象とした材料は慢性創傷の創部に貼付するドレッシン グ材 10 種類とした。フィルムドレッシング(以下, FD) 材 では、パーミエイド[®]S(日東メディカル)、オプサイト[®]ウ ンド(スミス・アンド・ネフュー)、ハイドロコロイドドレッ シング(以下, HC) 材では、アブソキャア[®]ーサジカル(日 東メディカル)、テガダームTM ハイドロコロイドドレッシ ング(スリーエムヘルスケア)、ポリウレタンフォームド レッシング(以下, PF) 材では、ハイドロサイト[®]薄型(ス ミス・アンド・ネフュー)、ハイドロサイト[®]為D(スミス・ アンド・ネフュー)、ウルゴチュール[®]アブソーブボーダー (ニトムズ)、メピレックス[®]ボーダ(メンリッケヘルスケ ア)、バイアテン[®]シリコーン+(コロプラスト)、ハイドロ ポリマードレッシング(以下, HP) 材でティエールTM(KCI) であった。

近赤外線照射に使用した機器はスーパーライザーPX(東 京医研),近赤外線強度の測定にはレーザーパワーメーター (日本科学エンジニアリング)を使用した。近赤外線の照射 条件は波長 0.6-1.6 µm の複合波長,光出力は 100%とした。

2.2 方法

FD 材 2 種類を除く 8 種類については, 滲出液を吸収する 前の乾燥したドレッシング材と滲出液を吸収したと仮定し たドレッシング材の 2 パターンで測定した。まず, ドレッ シング材を 1.5×1.5cm の大きさに切り, 滲出液を吸収した と仮定した(水分吸収時)ドレッシング材については, 生理 食塩水に 24 時間浸水させた。FD 材 2 種類については乾燥 した状態のみとした。

測定方法は、ドレッシング材をスーパーライザーPX の赤 外線照射ユニット部分とレーザーパワーメーターとの間に 置き、赤外線照射ユニット部分をドレッシング材に密着さ せた状態で赤外線透過度を同一の評価者が測定した(図 1)。

2.3 解析方法

測定はそれぞれのドレッシング材に対して 5 回ずつ実施 し、近赤外線透過率の平均値を算出した。その後、ドレッシ ング材なしの平均出力(1.27W/cm²)で除した値を 100 倍し 透過率を算出した。さらに、本研究で使用した測定方法によ る反復測定時の誤差を分類するために、FD 材は乾燥時のみ の1回目と2回目、HC 材、PF 材、HP 材においては乾燥時 と水分吸収時の1回目と2回目の測定、計18 個データに対 して Bland-Altman 分析^{11,12)}を行った。また、下井¹¹⁾の報告 に基づき、誤差の範囲を推定するため系統誤差が確認され た場合には誤差の許容範囲(Limit of agreement)を、系統誤 差が確認されず偶然誤差のみであった場合には最小可変化

図1:近赤外線透過率の計測

スーパーライザーPX の照射ユニットとパワーメーター測定器の間にドレッシング材を置き近赤外線強度を測定した。

量 (minimal detectable change)の 95%信頼区間 (以下, MDC₉₅) を算出することとした。

3 結果

Bland-Altman 分析の結果,今回の測定方法による反復測 定時の誤差は偶然誤差に分類され,MDC95は2.2%であった (図2)。

近赤外線透過率については, FD 材の透過率はパーミエイ ド[®]S が 97%, オプサイト[®]ウンドが 94%であった。HC 材 の乾燥時の透過率は, アブソキャア[®]ーサジカルが 96%, テ ガダーム TM ハイドロコロイドドレッシングが 87%であっ た。HC 材の水分吸収時の透過率はアブソキャア[®]ーサジカ ルが 66%, テガダーム TM ハイドロコロイドドレッシング が 49%であり, 水分を吸収することにより透過率が低下し た。PF 材の乾燥時の透過率はハイドロサイト®薄型が 13%, ハイドロサイト®AD が 17%, ウルゴチュール®アブソーブ ボーダーが 14%, メピレックス®ボーダが 21%, バイアテ ン®シリコーン+が 30%と低い透過率であった。PF 材の水 分吸収時の透過率はハイドロサイト®薄型が 25%, ハイド ロサイト®AD が 53%, ウルゴチュール®アブソーブボー ダーが 41%, メピレックス®ボーダが 55%, バイアテン® シリコーン+が 24%であり HC 材とは逆に水分を吸収する ことにより透過率が上昇した。HP 材ティエール ™ (KCI) の乾燥時の透過率は 38%, 水分吸収時の透過率は 33%であ り, 乾燥時と水分吸収時の透過率に大きな差はみられな かった (図 3, 4)。

4 考察

近赤外線療法は筋や腱の損傷による腫脹や炎症を軽減し, 軟部組織や創傷の治癒を改善するなど,さまざまな治療に 使用でき¹³,創傷治癒における近赤外線療法の効果として も、コラーゲン合成の強化²⁾や線維芽細胞の分裂の促進³⁾, 組織の上皮化⁴⁾,さらにサイトカイン産生の調整^{5.6)}などが 報告されている。臨床研究においても創の縮小効果が示さ れている^{14,15)}。しかしながら,近年の創傷治療では MWH が 推奨されドレッシング材で管理されることが多いことから, 創面に直接近赤外線療法を照射するためには創の洗浄時も しくは赤外線照射のためにドレッシング材を剥がす必要が ある。近赤外線療法は創傷の標準治療の補完療法として行

5回の反復測定のうち、1回目と2回目の近赤外線透過率のBland-Altman plot であり、破線は MDC95 を示している。

図3:ドレッシング材(乾燥時)の透過率

フィルムドレッシング材およびハイドロコロイドドレッシング材は高い透過率を示したが,ポリウレタンフォーム材・ ハイドロポリマー材の透過率は低い値を示した。

図4:ドレッシング材(水分吸収時)の透過率

乾燥時には高い透過率を示したハイドロコロイドドレッシング材は水分吸収時には透過率が低下した。ポリウレタン フォーム材は水分を吸収することにより透過率が上昇した。ハイドロポリマー材の透過率は乾燥時と近似値であった。 われる必要があるため、上記のように洗浄時の照射や照射 のためにドレッシング材を剥がす行為は不適切と考えられ る。そのため、ドレッシング材管理下でも効果的な近赤外線 照射を可能とするためにドレッシング材の透過率の検証を 実施した。その結果、ドレッシング材の透過率は素材や水分 の吸収によって変化がみられることが確認された。

FD 材については、パーミエイド®S が 97%、オプサイト® ウンドが94%であり、透過率は高いことが確認された。従っ て、上記2つのFD材のみで管理している際は100%に近い 強度が創部まで到達していると考えてよいことが示唆され た。HC 材については、製品により差が出たものの乾燥時の 透過率はアブソキャア®-サジカルが96%, テガダームTM ハイドロコロイドドレッシングが 87%であった。乾燥時の アブソキャア®-サジカルについては FD 材と同程度の透過 率が確認されたため FD 材と同様に考えてもよいと考える。 テガダームTMハイドロコロイドドレッシングに関しては約 10%が吸収されてしまうことを考慮しながら照射強度を検 討する必要がある。注目すべき点は,水分吸収によって透過 率が 30-38%減少することである。それゆえに臨床現場にお いてドレッシング材管理下で近赤外線照射を実施する際, 創面に適切な照射強度を到達されるためにはドレッシング 材が滲出液を吸収する前に実施する必要性が示唆された。

PF 材については、商品により差が大きくなる結果であった。HC 材と異なる点としては、乾燥時に比べ水分吸収時の 方が透過率が高かった点である。水分吸収時のハイドロサ イト®AD およびメピレックス®ボーダについては50%以上 の透過率があったため、創面に到達する照射強度が50%で も効果がある場合は滲出液が吸収された状態で照射するこ とにより効果が得られることが示唆された。ハイドロポリ マーについては、乾燥時・水分吸収時のどちらにおいても 40%以下であったためハイドロポリマー管理下で実施する こと控える必要があると考える。

さらに、本研究ではドレッシング材の透過率が正確であ るかの検証も実施する必要があったため、測定の誤差につ いても検討した.その結果、今回の計測値の間の誤差は Bland-Altman 分析より偶然誤差に分類された。したがって、 加算誤差や比例誤差といった系統誤差はないことが示唆さ れた。一方、今回の計測値は素材によって大小さまざまな値 であった。このような計測値の大小に影響を受ける比例誤 差が観察されなかったため、今回の測定方法による計測値 の誤差は素材による影響を受けないと考えられる。また、 MDC95の結果から、透過率2.2%以上の変化は偶然誤差以外 の因子に起因する変化と考えられる。この透過率の変化は 経年劣化など、素材の変化の指標になりうる可能性も示唆 された。

5 研究の限界

今回,慢性創傷の補完療法として近赤外線療法を実施す るための基礎資料として研究を実施した。その結果,ドレッ シング材の素材や水分吸収の有無によって透過率が変化す ることが確認された。しかしながら,臨床現場ではさまざま なドレッシング材を使用するのにも関わらず,本研究では すべてのドレッシング材の検証ができていない。それゆえ に,本研究で示されたもの以外のドレッシング材を使用す る場合は再度透過率を検証する必要がある。

6 今後の展望

慢性創傷における近赤外線療法は効果が示されているの にも関わらず,2014年に報告された Cochrane library¹⁰にお いて、ランダム化比較試験の少なさと質の低さから効果に ついては不明確とされている。しかしながら,基礎研究にお いても臨床研究においても効果が示されているため、今後 は本研究で行ったドレッシング材の近赤外線透過率を用い てドレッシング材貼付時でも補完療法として実施し臨床研 究が増えることで更なる効果を期待する。

<利益相反について>

本論文内容に関連する利益相反事項はない。

(2020.12.2- 投稿, 2021.3.24- 受理)

文 献

- 日本褥瘡学会.褥瘡予防・管理ガイドライン(第4版).褥 瘡会誌 17(4):487-557, 2015.
- Monstrey S, Hoeksema H, et al. A conservative approach for deep dermal burn wounds using polarised-light therapy. Br J Plast Surg 55(5):420-426, 2002.
- Karu T. Photobiology of low-power laser effects. Health Phys 56(5):691-704.1989.
- Herascu N, Velciu B,et al. Low-level laser therapy (LLLT) efficacy in post-operative wounds. Photomed Laser Surg 23(1):70-73, 2005.
- 5) Zhang Y, Song S, et al. cDNA Microarray Analysis of Gene Expression Profiles in Human Fibroblast Cells Irradiated with Red Light. J Invest Dermatol 120(5):849-857, 2003.
- 6) Peplow PV, Chung TY, et al. Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29(5):285-304, 2011.
- 7) 立花隆夫. ドレッシング材と外用薬による治療. 医学のあ ゆみ 258(9): 849-854, 2016.
- 8) 杉元雅晴,嶋田智明・他.ドレッシング材における超音波 周波数による透過率への影響. 褥瘡会誌 9(4): 508-514, 2007.

- 前重伯壮,荻原信夫・他. 超音波照射が褥瘡に対して与える影響 single case実験法に基づいて. 褥瘡会誌 10(4):507-512,2008.
- 10) Maeshige N, Fujiwara H, et al.: Evaluation of the combined use of ultrasound irradiation and wound dressing on pressure ulcers. J Wound Care 19(2), 63-68, 2010.
- 下井俊典. 評価の絶対信頼性. 理学療法科学 26(3):451-461,2011.
- 12) Bland JM, Altman D.: Statistical methods for assessing agreement between two methods of clinical measurement. 327(8476): 307-310, 1986.
- 13) ins D, Abrahamse H, et al.: Phototherapy—a treatment modality for wound healing and pain relief. Afr J Biomedl Res 10: 99-109, 2007.
- 14 Shojaei H, Sokhangoei Y, et al.: Low level laser therapy in the treatment of pressure ulcers in spinal cord handicapped veterans living in Tehran. Iran J Basic Med Sci 33(1): 44-48, 2008.
- 15) Dehlin O, Elmstahl S, et al.: Monochromatic phototherapy in elderly patients: a new way of treating chronic pressure ulcers?. Aging Clin Exp Res 15(3): 259-263, 2003.
- 16) Chen C, Hou WH, et al.: Phototherapy for treating pressure ulcers. Cochrane Database Syst Rev 11(7), 2014.

Verification of near-infrared transmittance in wound dressings

Yoshiyuki YOSHIKAWA* Yasutomo JONO* Koji TAKIMOTO* Mikiko UEMURA** Morihiro TSUZISHITA*

*Department of Health Science, NARAGAKUEN University. (3-15-1, Nakatomigaoka, Nara-shi, Nara, 631-8524, JAPAN) ** Department of Health Sciences, Kansaifukushikagaku Univirsity (3-11-1, Asahigaoka, Kashiwara-shi, Osaka, 582-0026, JAPAN)

Abstract

The aim of this study is to confirm the near-infrared transmittance of the wound dressing (dressing material). Nearinfrared irradiation can be performed even under dressing control, and complementary therapy for chronic wounds with the transmittance. Super Riser PX (Tokyo Medical Research Institute) was used for near-infrared, and the nearinfrared transmittance of the dressing materials were measured. The irradiation conditions were a composite wavelength with a wavelength of 0.6-1.6 µm, and the light output was 100%. This study used two types of film dressing (FD), two types of hydrocolloid dressing (HC), five types of polyurethane foam dressing (PF), and one type of hydropolymer dressing (HP). For HC material, PF material, and HP material, there were two patterns: a state without exudate (dry state) and a state assuming that exudate was contained (state in which physiological saline was absorbed). The measurement was performed 5 times for each dressing, and the average value of near-infrared transmittance was calculated. After that, the value divided by the output without the dressing material was taken as the transmittance. Furthermore, the measurement error was also examined by use of Bland-Altman analysis. As a result, the transmittance of the FD material was 94 to 97%. The transmittance in the dry state was 87 to 96% for HC material, 13 to 30% for PF material, and 38% for HP material. The transmittance of the absorbed physiological saline was 49-66% for HC material, 24-55% for PF material, and 33% for HP material. As a result of Bland-Altman analysis, the error during repeated measurement by this measurement method was a random error. Since the FD material had a transmittance of about 95%, it is considered that sufficient near-infrared rays reach the wound if only the FD material is used. However, the transmittances of HC, PF, and HP materials differed from 13 to 96%, suggesting that it is necessary to set the irradiation intensity after calculating the transmittance of the dressing used. For HC materials, the transmittance decreased by absorbing water, and for PF materials, the transmittance increased by absorbing water. Therefore, it was also suggested that it is necessary to consider the time of use depending on the type of dressing material.

Key Word : Phototherapy, wound dressing, pressure ulcer